Applied Physics A

, 125:199 | Cite as

Magnetism, magnetocaloric and magnetotransport properties of Dy5NiSi2 alloy

  • K. Arun
  • T. P. Rashid
  • Ivan Curlik
  • Sergej Ilkovic
  • Marian Reiffers
  • Andrea Dzubinska
  • R. NagalakshmiEmail author


Systematic investigations were carried out on the magnetic, thermodynamic, transport and magnetocaloric properties of arc melted Dy5NiSi2 compound. The polycrystalline compound shows two ferromagnetic (FM) transitions at T1 = 44 K and T2 = 72 K, respectively. The isothermal magnetization curves of T = 2–40 K reveal the presence of metamagnetic transition at a critical field around 4 T. The magnetic entropy change (ΔSM) computed from both isothermal magnetization and heat capacity data shows a maximum of 16.3 J/kg K at 72 K for a field change of 0–9 T. Also, the presence of two successive ferromagnetic transitions at T1 = 44 K and T2 = 72 K displays a table like magnetocaloric effect in a wide temperature range 29–137 K (ΔTcycle = 108 K) with a refrigerant capacity of 580 J/kg for a field change of 0–9 T. It also exhibits considerable negative magnetoresistance of 11% in 9 T at 2 K. Hence, the results on Dy5NiSi2 alloy are interesting for low-temperature magnetic refrigeration.



One of the authors RN thank UGC DAE Consortium, Indore for Scientific research for the sanction of project (No: CSR-IC/CRS-150/2015-16/07). The author KA thank UGC DAE Consortium, Indore for awarding JRF to work in the project and Slovak government for awarding National Slovak Scholarship for students. The help rendered by Mr. Nilesh Kulkarni and Mrs. Bhagyashree Chalke, Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai, India in structure and compositional measurements are highly acknowledged. This work is the result of the Project implementation: University Science Park TECHNICOM for Innovation Applications Supported by Knowledge Technology, ITMS: 26220220182, supported by the Research & Development Operational Programme funded by the ERDF and also by VEGA 1/0956/17, VEGA 1/0611/18 and APVV-16-0079.


  1. 1.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)CrossRefGoogle Scholar
  3. 3.
    V.K. Pecharsky, K.A. Gschneidner Jr., Int. J. Refrig. 29, 1239 (2006)CrossRefGoogle Scholar
  4. 4.
    B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, Z.H. Cheng, Adv. Mater. 21, 4545 (2009)CrossRefGoogle Scholar
  5. 5.
    J.C. Debnath, J. Wang, Intermetallics 78, 50 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Li, T. Namiki, D. Huo, Z. Qian, K. Nishimura, Appl. Phys. Lett. 103, 222405 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    R. Nirmala, A.V. Morozkin, R. Rajivgandhi, A.K. Nigam, S. Quezado, S.K. Malik, J. Magn. Magn. Mater. 418, 118 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    H. Zhang, Y. Wu, Y. Long, H. Wang, K. Zhong, F. Hu, J. Sun, B. Shen, J. Appl. Phys. 116, 213902 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    H. Fu, Z. Ma, X.J. Zhang, D.H. Wang, B.H. Teng, E. Agurgo, Balfour, Appl. Phys. Lett. 104, 072401 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M. Falkowski, A. Kowalczyk, T. Tolinski, J. Magn. Magn. Mater. 331, 144 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    K.E. Lee, H.J. Im, M.H. Jung, Y.S. Kwon, Phys. B 403, 1423 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H. Zhang, L.H. Yang, J.Y. Li, Z. Wang, E. Niu, R.M. Liu, Z.B. Li, F.X. Hu, J.R. Sun, B.G. Shen, J. Alloys. Compds. 615, 406 (2014)CrossRefGoogle Scholar
  13. 13.
    K.H.J. Buschow, Rep. Prog. Phys. 40, 1179 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    N.K. Singh, K.G. Suresh, R. Nirmala, A.K. Nigam, S.K. Malik, J. Appl. Phys. 99, 08K904 (2006)CrossRefGoogle Scholar
  15. 15.
    B.K. Banerjee, Phys. Lett. 12, 16 (1964)ADSCrossRefGoogle Scholar
  16. 16.
    H. Zhang, B.G. Shen, Z.Y. Xu, J. Shen, F.X. Hu, J.R. Sun, Y. Long, Appl. Phys. Lett. 102, 092401 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Q.Y. Dong, J. Chen, X.Q. Zhang, X.Q. Zheng, J.R. Sun, B.G. Shen, J. Appl. Phys. 114, 173911 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M.G. Silva, V.G. de Paula, A.O. dos Santos, A.A. Coelho, L.P. Cardoso, L.M. da Silva, Intermetallics 88, 36 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, Y. Zhang, X. Xu, S. Geng, L. Hou, X. Li, Z. Ren, G. Wilde, J. Alloys. Compds. 692, 665 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, Y. Yang, X. Xu, L. Hou, Z. Ren, X. Li, G. Wilde, J. Phys. D Appl. Phys. 49, 145002 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Zhang, Y. Yang, X. Xu, S. Geng, L. Hou, X. Li, Z. Ren, G. Wilde, Sci. Rep. 6, 34192 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Arun
    • 1
  • T. P. Rashid
    • 1
  • Ivan Curlik
    • 2
  • Sergej Ilkovic
    • 2
  • Marian Reiffers
    • 2
  • Andrea Dzubinska
    • 3
  • R. Nagalakshmi
    • 1
    Email author
  1. 1.Intermetallics and Non-linear Optics Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Faculty of Humanities and Natural SciencesPresov UniversityPresovSlovakia
  3. 3.Faculty of Natural SciencesP. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations