Applied Physics A

, 125:200 | Cite as

Studies of dielectric relaxation and impedance analysis of new electronic material: (Sb1/2Na1/2)(Fe2/3Mo1/3)O3

  • Subrat Kumar BarikEmail author
  • Suhel Ahmed
  • Sugato Hajra


A new polycrystalline ceramic sample of (Sb1/2Na1/2)(Fe2/3Mo1/3)O3 is formed by cheap mixed oxide processing technique. The mass loss and the calcination temperature of the sample are optimized by thermogravimetric analysis and repeated firing. The formed sample crystallizes in the orthorhombic crystal structure at room temperature depicted from the X-ray diffraction spectra. The dielectric relaxation, impedance and modulus analysis of the sample have been analyzed in various temperature and frequency range. The dielectric parameters of the sample depend on frequency and temperature and with an increment in temperature the relaxation time falls. Impedance spectroscopy analysis predicts the association of grain and grain boundary resistance. The short and long-range mobility of the charge carriers are illustrated by the modulus plot. Ac conductivity is seen to be temperature and frequency dependent and hopping of the charge carriers is also observed at high temperature. Further, the universal power law is followed by ac conductivity mechanism.



The authors thank AICTE for sanctioning the project [no.: 8023/RID/RPS-32/(POLICY-III)(NER)/2011-12] for experimental work.


  1. 1.
    M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    R.A.P. Ribeiro, L.H.S. Lacerda, E. Longo, J. Andrés, S.R. de Lazaro, J. Magn. Magn. Mater. 475, 544–549 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    H.W.Y. Piaojie Xue, X. Lu, Zhu, J. Mater. Sci. Technol. 34, 914–930 (2018)CrossRefGoogle Scholar
  4. 4.
    N.V. Minh, N.G. Quan, J. Alloys Compd. 509, 2663 (2011)CrossRefGoogle Scholar
  5. 5.
    W. Mao, X. Li, Y. Li, X. Wang, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, Mater. Lett 97, 56 (2013)CrossRefGoogle Scholar
  6. 6.
    V.S. Puli, A. Kumar, N. Panwar, I.C. Panwar, R.S. Katiyar, J. Alloys. Compd. 509, 8223 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Scrimshire, A. Lobera, A.M.T. Bell, A.H. Jones, I. Sterianou, S.D. Forder, P.A. Bingham, J. Phys. Condens. Matter. 30, 105704 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    N. Ramu, K. Meera, R. Ranjith, R. Muralidharan, Mater. Res. Express 6, 036106 (2019)CrossRefGoogle Scholar
  9. 9.
    Z.-Q. Wang, Y.-S. Lan, Z.-Y. Zeng, X.-R. Chen, Q.-F. Chen, Solid State Commun. 288, 10–17 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    G.B. Zhang, Y.X. Wang, F.Z. Ren, Y.L. Yan, J. Phys. Soc. Jpn. 81, 074702 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C.X. Lu, J.Y. Chu, Y.C. Zhai, Y.W. Tian, J. Harbin Inst. Technol. 36, 10 (2004)Google Scholar
  12. 12.
    S.K. Bera, S.K. Barik, R.N.P. Choudhary, P.K. Bajpai, Bull. Mater. Sci. 35, 47 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Thakur, O.P. Pandey, K. Singh, Ceram. Int. 40, 16371 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Ahmed, S.K. Barik, J. Alloys. Compd. 626, 292 (2015)CrossRefGoogle Scholar
  15. 15.
    J.M. Luiz, J.R. Matos, I. Giolito, M. Ionashiro, Thermochim. Acta 254, 209 (1995)CrossRefGoogle Scholar
  16. 16.
    E. Wu, J. Appl. Cryst. 22, 506–510 (1989)CrossRefGoogle Scholar
  17. 17.
    K. He, N. Chen, C. Wang, L. Wei, J. Chen, Cryst. Res. Technol. 53, 1700157 (2018)CrossRefGoogle Scholar
  18. 18.
    V.M. Goldschmidt, Die Geseze der Krystallochemie, Naturwissenschaften 14, 477 (1926)ADSCrossRefGoogle Scholar
  19. 19.
    K. Parida, R.N.P. Choudhary, Mater. Res. Express 4, 076302 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    T. Md, M. Rahman, C.V. Vargas, Ramana, J. Alloy. Compd. 617, 547–562 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Parida, S.K. Dehury, R.N.P. Choudhary, Phys. Lett. A 380, 4083–4091 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    C.G. Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  23. 23.
    S. Nath, S.K. Barik, S. Hajra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 12251–12257 (2018)CrossRefGoogle Scholar
  24. 24.
    H.O. Rodrigues, G.F.M. Pires Jr., J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, J. Phys. Chem. Solids 71, 1329 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.H. Hong, Solid State Comm. 135, 133 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    S. Pattanayak, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 24, 2767 (2013)CrossRefGoogle Scholar
  27. 27.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Alloys. Compd. 603, 224 (2014)CrossRefGoogle Scholar
  29. 29.
    Y.A. Chaudhari, A. Singh, C.M. Mahajan, P.P. Jagtap, E.M. Abuassaj, R. Chatterjee, S.T. Bendre, J. Magn. Magn. Mater. 347, 153 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J. Mohanty, P. Behera, S.R. Mishra, T. Badapanda, S. Anwar, I.O.P. Conf. Ser. Mater. Sci. Eng. 178, 012014 (2017)CrossRefGoogle Scholar
  31. 31.
    B. Pati, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 2201 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Kumar, R.N.P. Choudhary, B.P. Singh, A.K. Thakur, Ceram. Int. 32, 73 (2006)CrossRefGoogle Scholar
  33. 33.
    V. Purohit, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)CrossRefGoogle Scholar
  34. 34.
    S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, J. Alloys. Compd. 459, 35 (2008)CrossRefGoogle Scholar
  35. 35.
    D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Multifunctional Materials Laboratory, Department of PhysicsNational Institute of TechnologySilcharIndia
  2. 2.Department of Electronics and InstrumentationSiksha O Anusandhan UniversityBhubaneswarIndia

Personalised recommendations