Advertisement

Applied Physics A

, 125:192 | Cite as

Effect of graphene oxide dispersion in nematic mesogen and their characterization results

  • Ayushi Rastogi
  • Rajiv ManoharEmail author
Article
  • 46 Downloads

Abstract

Graphene oxide is dispersed in negative dielectric anisotropy nematic liquid crystal p-methoxybenzylidene p-decylaniline (MBDA) in 0.2 wt/wt%, 0.4 wt/wt%, 0.6 wt/wt%, and 0.8 wt/wt% concentrations (abbreviated as MIX 1, MIX 2, MIX 3 and MIX 4). The paper proposes techniques to characterize and fill in the sample holder nematic–graphene oxide composites. The textures, electro-optical, dielectric as well as optical properties at 54 °C in nematic phase are investigated. X-ray diffraction result shows the particle size of graphene oxide to be 10–60 nm. The zeta potential of graphene oxide is around − 35 mV and its absolute value decreases from 31.5 mV in pure MBDA to 0.56 mV in MIX 4. Polarizing microscopy results display that MBDA and its composites in unaligned cell exhibit poor contrast with non-uniformity in bright state whereas aligned ones exhibit good contrast with uniformity. The observation reveals that switch-on time practically remains constant, while switch-off time and overall response time reduces from 25.8% (MIX 1) to 83.67% (MIX 4) and 25.69–83.074%, compared to pure MBDA. Rotational viscosity increases from 2.59 to 18.18%. The threshold voltage and splay elastic constant in pure MBDA and its composites increase from 2 to 3 V and 7.25 to 8.12 pN. Reduction in dielectric parameters has been observed. The magnitude of \(~\varepsilon {'_\parallel }\) and \(\varepsilon {'_ \bot }\) reduces from 44.2 to 76.1% and 24.6 to 72.8%, which shows \(\varepsilon {'_ \bot }\) is always greater than \(\varepsilon {'_\parallel }\). Therefore, absolute dielectric anisotropy reduces from 1.49 to 79.10%. The dielectric relaxation frequency reduces from 4.3 × 105 Hz to 2.81 × 105 Hz without bias voltage and 6.13 × 105 Hz to 2.2 × 105 Hz with bias voltage. UV–Vis absorbance study discloses π–π* transition with absorbance increase from 4.44 to 57.18% and corresponding blue shift in wavelength (249–194 nm). 7.23–65.90% quenching in photoluminescence study has been revealed. FTIR spectra are recorded on wavenumber range from 655 to 3500 cm−1. This work has application in sensors, imaging functions, improved electro-optic display devices and colorful displays devoid of color filters.

Notes

Acknowledgements

A.R is thankful to UGC (F-25-1/2014-15(BSR)/7-177/2007/BSR) New Delhi for providing financial assistance in the form of UGC-BSR Fellowship. R.M is thankful to UGC for UGC MID career award. Authors are also thankful to Indian institute of technology (IIT), Banaras Hindu University (BHU) and APJ Kalam Centre for Innovation for providing experimental facilities.

Supplementary material

339_2019_2493_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 82 KB)

References

  1. 1.
    R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications. Adv. Mater. 28, 3045–3068 (2016).  https://doi.org/10.1002/adma.201505122 CrossRefGoogle Scholar
  2. 2.
    T.-Zi Shen, S.-Ho Hong, J.-Kun Song, Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient, Nat. Mater. 13, 394–399 (2014).  https://doi.org/10.1038/NMAT3888 ADSCrossRefGoogle Scholar
  3. 3.
    C. Chung, Y.-Kwan Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013).  https://doi.org/10.1021/ar300159f CrossRefGoogle Scholar
  4. 4.
    S. Pang, Y. Hernandez, X. Feng, K. Müllen, Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 2779–2795 (2011).  https://doi.org/10.1002/adma.201100304 CrossRefGoogle Scholar
  5. 5.
    U.K. Sur, A. Saha, A. Datta, B. Ankamwar, F. Surti, S.D. Roy, D. Roy, Synthesis and characterization of stable aqueous dispersions of graphene. Bull. Mater. Sci. 39(1), 159–165 (2016) (Indian Academy of Sciences) CrossRefGoogle Scholar
  6. 6.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014).  https://doi.org/10.1016/j.jcis.2014.05.033 ADSCrossRefGoogle Scholar
  7. 7.
    R.T. Mehmood Ahmad, S.-Ho Hong, T.-Zi Shen, J.-Kun Song, Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion. Carbon 98, 188–194 (2016).  https://doi.org/10.1016/j.carbon.2015.11.007 CrossRefGoogle Scholar
  8. 8.
    D. Rajh, S. Shelestiuk, A. Mertelj, A. Mrzel, P. Umek, S. Irusta, A. Zak, I. Drevenšek-Olenik, Liquid crystals with nano and micro particles. Status Solidi 210, 2328 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).  https://doi.org/10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  10. 10.
    N. Dalir, S. Javadian, J. Kakemam, A. Yousefi, Evolution of electro-chemical and electro-optical properties of nematic liquid crystal doped with graphene oxide. J. Mol. Liq.  https://doi.org/10.1016/j.molliq.2018.05.138
  11. 11.
    S. Al-Zangana, M. Iliut, M. Turner, A. Vijayaraghavan, I. Dierking, Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv. Optical Mater. (2016).  https://doi.org/10.1002/adom.201600351 CrossRefGoogle Scholar
  12. 12.
    S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, I. Dierking, Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide. Sci. Rep. 6:31885.  https://doi.org/10.1038/srep31885
  13. 13.
    P. Lin, Q. Yan, Y. Chen, X. Li, Z. Cheng, Dispersion and assembly of reduced graphene oxide in chiral nematic liquid crystals by charged two-dimensional nanosurfactants. Chem. Eng. J. (2017).  https://doi.org/10.1016/j.cej.2017.09.195 CrossRefGoogle Scholar
  14. 14.
    R. Tantra, P. Schulze, P. Quincey, Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 8, 279–285 (2010).  https://doi.org/10.1016/j.partic.2010.01.003 CrossRefGoogle Scholar
  15. 15.
    R. Xu, Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology 6, 112–115 (2008).  https://doi.org/10.1016/j.partic.2007.12.002 CrossRefGoogle Scholar
  16. 16.
    W. Wu, T. Wei, X. Fan, F. Chen, DAC circuit with multi- threshold voltage for TFT-LCD Driver IC, 2007 10th IEEE International conference on computer-Aided Design and Computer graphics (2007) pp. 304–308Google Scholar
  17. 17.
    C.-Y. Huang, H.-C. Pan, C.-T. Hsieh, Nanoparticles-induced vertical alignment in liquid crystal cell. Jpn. J. Appl. Phys. 45, 6392 (2006).  https://doi.org/10.1063/1.2768309 ADSCrossRefGoogle Scholar
  18. 18.
    R. Basu, Effect of carbon nanotubes on the field-induced nematic switching. Appl. Phys. Lett. 103, 241906 (2013).  https://doi.org/10.1063/1.4846676 ADSCrossRefGoogle Scholar
  19. 19.
    O. Kozak, M. Sudolská, G. Pramanik, P. Cígler, M. Otyepka, R. Zbořil, Photoluminescent carbon nanostructures. Chem. Mater. 28, 4085–4128. (2016).  https://doi.org/10.1021/acs.chemmater.6b01372 CrossRefGoogle Scholar
  20. 20.
    H.V. Kumar, S.J. Woltornist, D.H. Adamson, Fractionation and characterization of graphene oxide by oxidation extent through emulsion stabilization. Carbon 98, 491–495 (2016).  https://doi.org/10.1016/j.carbon.2015.10.083 CrossRefGoogle Scholar
  21. 21.
    R.T. Mehmood Ahmad, T. -Zi Shen, A.R. Masud, T.K. Ekanayaka, B. Lee, J.-Kun Song, Guided electro-optical switching of small graphene oxide particles by larger ones in aqueous dispersion. Langmuir 32, 13458–13463 (2016).  https://doi.org/10.1021/acs.langmuir.6b03460 CrossRefGoogle Scholar
  22. 22.
    H.Y. Chen, W. Lee, N.A. Clark, Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension. Appl. Phys. Lett. 90, 033510 (2007).  https://doi.org/10.1063/1.2432294 ADSCrossRefGoogle Scholar
  23. 23.
    L.M. Blinov, V.G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer, New York, 1996)Google Scholar
  24. 24.
    A. Rastogi, G. Pathak, A. Srivastava, J. Herman, R. Manohar, Cd1–x ZnxS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Mol. Liq. 255C, 93–101 (2018).  https://doi.org/10.1016/j.molliq.2018.01.132 CrossRefGoogle Scholar
  25. 25.
    S. Dixit, Liquid crystals: a dielectric and electro- optical study, Chap. 3, Ph.D. ThesisGoogle Scholar
  26. 26.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).  https://doi.org/10.1021/jao1539a017 CrossRefGoogle Scholar
  27. 27.
    S. Srivastava, M.A. Ali, S. Umrao, U.K. Parashar, A. Srivastava, G. Sumana, B.D. Malhotra, S.S. Pandey, S. Hayase, Graphene oxide-based biosensor for food toxin detection. Appl. Biochem. Biotechnol. 174, 960–970 (2014).  https://doi.org/10.1007/s12010-014-0965-4 CrossRefGoogle Scholar
  28. 28.
    F. Assist. Prof. Dr, Mindivan, The synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (RGO), Scientific Proceedings XIII International Congress “Machines Technolоgies”. Materials. 2016—winter session, ISSN 1310-3946Google Scholar
  29. 29.
    F.T. Johra, J.-W. Lee, W. -Gwang Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887, (2014).  https://doi.org/10.1016/j.jiec.2013.11.022 CrossRefGoogle Scholar
  30. 30.
    G. Pathak, K. Agrahari, G. Yadav, A. Srivastava, O. Strzezysz, R. Manohar, Tuning of birefringence, response time, and dielectric anisotropy by the dispersion of fluorescent dye into the nematic liquid crystal. Appl. Phys. A 124, 463 (2018).  https://doi.org/10.1007/s00339-018-1878-9 ADSCrossRefGoogle Scholar
  31. 31.
    G. Pathak, A. Rastogi, B.P. Singh, A. Srivastava, O. Strzezysz, R. Manohar, Investigation of several essential display features for the low birefringent nematic liquid crystal dispersed with polymer. Appl. Phys. A 124, 732 (2018).  https://doi.org/10.1007/s00339-018-2149-5 ADSCrossRefGoogle Scholar
  32. 32.
    M. Pande, P.K. Tripathi, S.K. Gupta, R. Manohar, S. Singh, Enhancement of birefringence of liquid crystals with dispersion of poly (n-butyl methacrylate) (PBMA). Liq. Cryst. 42(10), 1465–1471 (2015).  https://doi.org/10.1080/02678292.2015.1061143 CrossRefGoogle Scholar
  33. 33.
    A. Gangopadhyay, A. Aditi Sarkar, Estimation of particle size distribution of nanoparticles from electrical characteristics. Bull. Mater. Sci. 41, 15 (2018).  https://doi.org/10.1007/s12034-017-1534-6 CrossRefGoogle Scholar
  34. 34.
    S. -Ho Hong, T. -Zi Shen, J. -Kun Song, Manipulation of structural color reflection in graphene oxide dispersions using electric fields. Opt. Express 23, 15 (2015).  https://doi.org/10.1364/OE.23.018969 CrossRefGoogle Scholar
  35. 35.
    B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin, J.M. Tour, M. Pasquali, I.I. Smalyukh, Liquid crystals of aqueous, giant graphene oxide flakes, Soft Matter 7, 11154 (2011).  https://doi.org/10.1039/c1sm06418e ADSCrossRefGoogle Scholar
  36. 36.
    M.M. Qasim, A.A. Khan, A. Kostanyan, P.R. Kidambi, A. Cabrero-Vilatela, P. Braeuninger-Weimer, D.J. Gardiner, S. Hofmann, T.D. Wilkinson, Hybrid graphene nematic liquid crystal light scattering device. Nanoscale RSC (2015).  https://doi.org/10.1039/c5nr04094a CrossRefGoogle Scholar
  37. 37.
    T. Rattana, S. Chaiyakun, N. Witit-anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 32, 759–764 (2012).  https://doi.org/10.1016/j.proeng.2012.02.009 CrossRefGoogle Scholar
  38. 38.
    F.T. Thema, M.J. Moloto, E.D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfouch, Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide, J. Chem. 2013, article ID 150536 (2013).  https://doi.org/10.1155/2013/150536 CrossRefGoogle Scholar
  39. 39.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).  https://doi.org/10.1016/0025-5408(68)90023-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Liquid Crystal Research Laboratory, Department of PhysicsUniversity of LucknowLucknowIndia

Personalised recommendations