Applied Physics A

, 125:209 | Cite as

Effect of excess oxygen content within different nano-oxide additives on the structural and optical properties of PVA/PEG blend

  • Mohamed Bakr Mohamed
  • M. H. Abdel-KaderEmail author


Different nano-oxides (Cr2O3, NiO, Co3O4) were added to polyvinyl alcohol/polyethylene glycol (70/30 wt%) blend. Rietveld profile analysis method was used to investigate the structure and microstructure characteristics of nano-oxide fillers. The effect of different nano-oxide fillers on the optical transparencies of the blend samples is confirmed. Co3O4 nano-oxide showed a higher uniform distribution within blends among other oxides. The variation of the absorption, the transmittance, the extinction coefficient, the refractive index and the energy gap (direct and indirect) of different blends based on different oxide fillers was examined by UV–Vis spectrophotometry technique. A single-term Sellmeier Oscillator approximation model was used to investigate the effect of excess oxygen atoms of the added nano-oxide fillers on the strength of the inter-band optical transitions, average excitation energy, average inter-band oscillator wavelength, the long-wavelength refractive index and the average oscillator strength. The effect of doping on the dielectric constant (real and imaginary) and optical conductivity of different blends behavior was investigated in detail as well.



  1. 1.
    M. Morsi, A. Abdelghany, Mater. Chem. Phys. 201, 100 (2017)CrossRefGoogle Scholar
  2. 2.
    X. Wang, X. Qi, Z. Lin, D. Battocchi, Nanomaterials 8, 1005 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Das, S. Biswas, J. Ind. Text. 47(4), 1 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Jafarian, S.S.S. Afghahi, Y. Atassi, M. Saleh, J. Magn. Magn. Mater 471, 30 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    L. Wang, H. Luo, X. Zhou, A. Wei, K. Zhou, Z. Chen, D. Zhang, Ionics 24(12), 3975 (2018)CrossRefGoogle Scholar
  6. 6.
    E.F. Reis, F.S. Campos, A.P. Lage, R.C. Leite, Mater Res 9, 185 (2006)CrossRefGoogle Scholar
  7. 7.
    N.A. Peppas, N.K. Mongia, Eur. J. Pharm. Biopharm. 43, 52 (1997)CrossRefGoogle Scholar
  8. 8.
    N. Rajeswari, S. Selvesekarapandian, S. Karthikeyan, H. Nithya, C. Sanjeeviraja, Int. J. Polym. Mater. 2012, 61, 1164CrossRefGoogle Scholar
  9. 9.
    Z. C.Wang, X. He, X. Xie, Y. Mai, T. Li, M. Li, C. Zhao, H. Yan, E.K. Liu, Z.Guo Wujcik, Macromol. Mater. Eng. 3, 17 (2018)Google Scholar
  10. 10.
    C. Wang, B. Mo, Z. He, Q. Shao, D. Pan, E. Wujick, J. Guo, X. Xie, X. Xie, Z. Guo, J. Membrane Sci. 556, 118 (2018)CrossRefGoogle Scholar
  11. 11.
    C. Wang, B. Mo, Z. He, X.D. Xie, C. (xinxin) Zhao, L. Zhang, Q. Shao, X. Guo, E.K. Wujcik, Z. Guo, Polymer 138, 363 (2018)CrossRefGoogle Scholar
  12. 12.
    V. C.Wang, J. Murugadoss, Z. Kong, X. He, Q. Mai, Y. Shao, L. Chen, C. Guo, S. Liu, Z. Angaiah, Guoc, Carbon 140, 696 (2018)CrossRefGoogle Scholar
  13. 13.
    P.E.C.S. Ghosh, Kofinas, Trans. 11, 131 (2008)Google Scholar
  14. 14.
    E. James, Mark, Polymer data hand book. Oxford University Press, Oxford (1998)Google Scholar
  15. 15.
    M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, J.Q.M. Almarashi, J. Mol. Struct. 1155, 666 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Alhazime, M.B. Mohamed, M.H. Abdel-Kader, J. Inorg. Organom. Polym. (2018). CrossRefGoogle Scholar
  17. 17.
    X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Mater. Chem. 21, 9319 (2011)CrossRefGoogle Scholar
  18. 18.
    M. E.Soleimani, Mohammadi, J. Mater. Sci-Mater El 29, 9494 (2018)CrossRefGoogle Scholar
  19. 19.
    E. Soleimani, F.B. Niavarzi, J. Mater. Sci-Mater El 29, 2392 (2018)CrossRefGoogle Scholar
  20. 20.
    M.A. Khafri, M.H.K. Lafdani, Powder Technol. 222, 152 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Ivanova, A. Gesheva, A. Cziraki, Szekeres, E. Vlaikova, J. Phys. Conf. Ser. 113, 012030 (2008)CrossRefGoogle Scholar
  22. 22.
    M.El Sayed, H.M. Diab, R. El-Mallawany, J. Polym. Res. 20, 255 (2013)CrossRefGoogle Scholar
  23. 23.
    M.El Sayed, W.M. Morsi, J. Mater. Sci. 49, 5378 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    K. Kannan, L. Guru Prasad, S. Agilan, N. Muthukumarasamy, Opt. Int. J. Light Electron Opt. 170, 10 (2018)CrossRefGoogle Scholar
  25. 25.
    K. Ramamohan, V.B.S. Achari, A.K. Sharma, L. Xiuyang, Ionics. 21(5), 1333 (2014)CrossRefGoogle Scholar
  26. 26.
    A.M. Hassen, W.M. El Sayed, S. Morsi, El-Sayed, J. Appl. Phys. 112, 093525 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Hassen, W.M. El-Sayed, A.M. Morsi, El, Sayed, Journal of Advances in Physics 4(3), 571 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268, 334 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Pandey, G.M. Joshi, N.N. Ghosh, Int. J Polm. Mater. Polym. 65(15), 759 (2016)CrossRefGoogle Scholar
  31. 31.
    G.A.M. Amin, M.H. Abd-El, Salam, Mater. Res. Express 1, 1 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Rabee, F.Z. Razooqi, Chem. Mater. Res. 7(4), 103 (2015)Google Scholar
  33. 33.
    K. Anandan, V. Rajendran, Mater. Sci. Semicond. Process. 14, 43 (2011)CrossRefGoogle Scholar
  34. 34.
    H.T. Rahal, R. Awad, A.M. Abdel-Gaber, D. El-Said Bakeer. J. Nanomater. 20, 1 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Newman, R.M. Chrenko. Phys. Rev. 114(6), 1507 (1959)ADSCrossRefGoogle Scholar
  36. 36.
    B. Karlsson, C.G. Ribbing, A. Roos, E.Valkonen, T. Karlsson, Phys. Scr. 25, 826 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    A.K. Abass, E.M. Jaboori. Phys. Stat. Solidi 116, 111 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    M.M. Abdullah, F.M. Rajab, S.M. Al-Abbas. AIP Adv. 4, 1 (2014)CrossRefGoogle Scholar
  39. 39.
    R.H. Misho, W.A. Murad, G.H. Fattahallah, Thin Solid Films. 169, 235 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    A. Holt, P. Kofstad, Solid State Ionics. 69, 127 (1994)CrossRefGoogle Scholar
  41. 41.
    J. Pal, P. Chauhan, Mater. Charact. 6, 575 (2010)CrossRefGoogle Scholar
  42. 42.
    X. Zhu, J. Wang, D. Nguyen, J. Thomas, R.A. Norwood, N. Peyghambarian, Opt. Mater. Express 2(1), 103 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    P.S. Patil, L.D. Kadam, C.D. Lokhande, Thin Solid Films 272, 29 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    X. Zhu, J. Wang, P. Lau, D. Nguyen, R.A. Norwood, N. Peyghambarian, Appl. Phys. Lett. 97, 1 (2010)Google Scholar
  45. 45.
    M.El Sayed, S. El-Gamal, J Polym Res. 22(97), 2 (2015)Google Scholar
  46. 46.
    H. Wei, C. He, J. Liu, H. Gu, Y. Wang, X. Yan, J. Guo, D. Ding, N.Z. Shen, X. Wang, S. Wei, Z. Guo, Polymer. 67, 192 (2015)CrossRefGoogle Scholar
  47. 47.
    G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, J. Phys. Chem. 113, 4357 (2009)Google Scholar
  48. 48.
    K.M.E. Miedzinska, B.R. Hollebone, J.G. Cook, J. Phys. Chem. Solids 48(7), 649 (1987)ADSCrossRefGoogle Scholar
  49. 49.
    S.A. Makhlouf, Z.H. Bakr, K.I. Aly, M.S. Moustafa. Superlattices Microstruct. 64, 107 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    H. Yamamoto, S. Tanaka, T. Naito, K. Hirao, Appl. Phys. Lett. 81(6), 999 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    A.M. Hassen, W.M. El Sayed, S. Morsi, El-Sayed, J. Appl. Phys. 112, 1 (2012)CrossRefGoogle Scholar
  52. 52.
    I.R. Hashim, K.J. Agool, Kadhim, J. Mater. Sci.-Mater. Electron. 23, 1 (2018)Google Scholar
  53. 53.
    H. Hashim, M. Hakim, Ali, Chem. Mater. Eng. 2(2), 47 (2014)Google Scholar
  54. 54.
    B.H. Rabee, F.Z. Razooqi, Chem. Mater. Res. 7(4), 103 (2015)Google Scholar
  55. 55.
    E.F. Keskenler, G. Turgut, S. Dogan. Superlattices Microstruct. 52, 107 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    I.S. Yahia, A.A.M. Farag, M. Cavas, F. Yakuphanoglu. Superlattices Microstruct. 53, 63 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    S.H. Wemple, M. DiDomenico Jr, Phys. Rev. B. 2(3), 1338 (1971)ADSCrossRefGoogle Scholar
  58. 58.
    G.J. Burrell, T.S. Moss, B. Ellis, S. Optoelectronics, Wiley, Butterworth & Co. (Publishers) Ltd, New York, 1973Google Scholar
  59. 59.
    N.K. Abbas, M.A. Habeeb, A.J.K. Algidsawi, J. Polym. Sci. 24, 1 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceTaibah UniversityAl-Madina al MunawarahSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations