Advertisement

Applied Physics A

, 125:185 | Cite as

Effect of the ZrCl4 static vaporiser system and deposition time on growth characteristics of chemical vapour deposited zirconium carbide layers

  • Saphina BiiraEmail author
  • Thulani T. Hlatshwayo
  • Philip L. Crouse
  • Hertzog Bissett
  • Thabsile T. Thabethe
  • Mbuso Mlambo
  • Johan B. Malherbe
Article
  • 29 Downloads

Abstract

ZrC layers were deposited from ZrCl4–Ar–CH4–H2 gas mixture in a home-built vertical wall chemical vapour deposition system within the deposition time range 0.5–2.5 h. The flow behaviour of ZrCl4 from the static vaporiser system to reaction chamber as a function of time was studied. To investigate the microstructure evolution and the growth characteristics of ZrC layers with deposition time, the growth rate, microstructure, morphology and composition were analysed. The layer thickness increased with deposition time all through; however, its growth rate increased up to 1.0 h and thereafter declined. The X-ray diffraction (XRD) analysis showed both ZrC and carbon peaks. The intensity of the carbon peaks followed a non-linear trend with deposition time. The average crystallite size and the number of crystallites per unit volume of the layers increased with deposition time. The orientation of crystallographic plane also varied with the deposition time. At short deposition times, the Raman spectra showed the acoustic and optic branches indicating that the ZrC deposited contained carbon vacancies. The D and G peaks of carbon increased as the deposition time increased, an indication of free carbon in the deposited layers. At short deposition times, the surface morphology of the layers was relatively flat and smooth. The particle size and agglomerations also increased with time.

Notes

Acknowledgements

Necsa and the Department of Science and Technology of South Africa through the Nuclear Materials Development Network of the Advanced Metals Initiative are highly appreciated for the provision of funding, laboratory space and experimental materials. The funding from Busitema University, the African Union and the University of Pretoria are highly acknowledged.

References

  1. 1.
    Y. Katoh, G. Vasudevamurthy, T. Nozawa, L.L. Snead, Properties of zirconium carbide for nuclear fuel applications. J. Nucl. Mater. 441, 718–742 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    R.W. Harrison, W.E. Lee, Processing and properties of ZrC, ZrN and ZrCN ceramics: a review. Adv. Appl. Ceram. 115, 294–307 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, Q. Liu, J. Liu, L. Zhang, L. Cheng, Deposition mechanism for chemical vapor deposition of zirconium carbide coatings. J. Am. Ceram. Soc. 91, 1249–1252 (2008).  https://doi.org/10.1111/j.1551-2916.2007.02253.x CrossRefGoogle Scholar
  4. 4.
    L.L. Snead, Y. Katoh, S. Kondo, Effects of fast neutron irradiation on zirconium carbide. J. Nucl. Mater. 399, 200–207 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Woo, G. Bourne, V. Craciun, D. Craciun, R.K. Singh, Mechanical properties of ZrC thin films grown by pulsed laser deposition. J. Optoelectron. Adv. Mater. 8 (1), 20–23 (2006)Google Scholar
  6. 6.
    K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater Sci. 48, 57–170 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Park, T.S. Sudarshan, Chemical Vapor Deposition (ASM International, Chicago, 2001)Google Scholar
  8. 8.
    H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, 2nd edn. (William Andrew, New York, 1999)Google Scholar
  9. 9.
    C.M. Hollabaugh, R.D. Reiswig, P. Wagner, L. Wahman, R.W. White, A new method for coating microspheres with zirconium carbide and zirconium carbide-carbon graded coats. J. Nucl. Mater. 57, 325–332 (1975).  https://doi.org/10.1016/0022-3115(75)90217-2 ADSCrossRefGoogle Scholar
  10. 10.
    T.C. Wallace, Chemical vapor deposition of ZrC in small bore carbon-composite tubes. No. LA-UR-73-692. Los Alamos Scientific Laboratory, New Mexico, USA (1973)Google Scholar
  11. 11.
    A.R. Driesner, E.K. Storms, P. Wagner, T.C. Wallace, High temperature-low density ZrC insulators made by chemical vapor deposition. No. LA-UR-73-804; CONF-731017-2. Los Alamos Scientific Laboratory, New Mexico, USA (1973)Google Scholar
  12. 12.
    M. Ohring, Materials Science of Thin Films, 3rd edn. (Academic press, London, 2002)Google Scholar
  13. 13.
    J.L. Vossen, W. Kern, Thin Film Processes II (Academic press, San Diego, 1991)Google Scholar
  14. 14.
    M. Xin, L. Yong, M. Min, H. Haifeng, H. Xinbo, Q. Xuanhui, C. Si’an, Effect of deposition time on microstructures and growth behavior of ZrC coatings prepared by low pressure. J Wuhan Univ Technol Mater Sci Ed 32, 284–288 (2017).  https://doi.org/10.1007/s11595-017-1593-y CrossRefGoogle Scholar
  15. 15.
    S. Biira, P.L. Crouse, H. Bissett, B.A.B. Alawad, T.T. Hlatshwayo, J.T. Nel, J.B. Malherbe, Optimisation of the synthesis of ZrC coatings in a radio frequency induction-heating chemical vapour deposition system using response surface methodology. Thin Solid Films 624, 61–69 (2017).  https://doi.org/10.1016/j.tsf.2017.01.018 ADSCrossRefGoogle Scholar
  16. 16.
    S. Biira, B.A.B. Alawad, H. Bissett, J.T. Nel, T.P. Ntsoane, T.T. Hlatshwayo, P.L. Crouse, J.B. Malherbe, Influence of the substrate gas-inlet gap on the growth rate, morphology and microstructure of zirconium carbide films grown by chemical vapour deposition. Ceram. Int. 43, 1354–1361 (2017).  https://doi.org/10.1016/j.ceramint.2016.10.092 CrossRefGoogle Scholar
  17. 17.
    Q. Liu, L. Zhang, L. Cheng, Y. Wang, Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition. J Coatings Technol Res 6, 269–273 (2009)CrossRefGoogle Scholar
  18. 18.
    J.H. Park, C.H. Jung, D.J. Kim, J.Y. Park, Temperature dependency of the LPCVD growth of ZrC with the ZrCl4-CH4-H2 system. Surf Coatings Technol 203, 324–328 (2008)CrossRefGoogle Scholar
  19. 19.
    P. Patnaik, Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2003)Google Scholar
  20. 20.
    Y.M. Jung, M.K. Gyeong, L. Moonyong, Measurement of bubble point pressures of zirconium and hafnium tetrachloride mixture for zirconium tetrachloride purification process. Int J Chem Eng Appl 3, 427–429 (2012)Google Scholar
  21. 21.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 1st edn. (Addison-Wesley Publishing company Inc, Massachusetts, 1956)Google Scholar
  22. 22.
    J.P. Enríquez, X. Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol Energy Mater Sol Cells 76, 313–322 (2003)CrossRefGoogle Scholar
  23. 23.
    Y. Kajikawa, N. Sugura, K. Hirosha, Mechanisms controlling preferred orientation of chemical vapor deposited polycrystalline films. Solid State Phenom 93, 411–418 (2003).  https://doi.org/10.4028/www.scientific.net/SSP.93.411 CrossRefGoogle Scholar
  24. 24.
    Y. Kajikawa, Texture development of non-epitaxial polycrystalline ZnO films. J. Cryst. Growth 289, 387–394 (2006).  https://doi.org/10.1016/j.jcrysgro.2005.11.089 ADSCrossRefGoogle Scholar
  25. 25.
    W.-K. Burton, N. Cabrera, F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R Soc. Lond. A Math. Phys. Eng. Sci. 243, 299–358 (1951)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    C.-C. Liu, J.-H. Huang, C.-S. Ku, S.-J. Chiu, J. Ghatak, S. Brahma, C.-W. Liu, C.-P. Liu, K.-Y. Lo, Crystal orientation dynamics of collective zn dots before preferential nucleation. Sci Rep 5, 12533 (2015).  https://doi.org/10.1038/srep12533 ADSCrossRefGoogle Scholar
  27. 27.
    Y. Kajikawa, N. Suguru, K. Hiroshi, Preferred orientation of chemical vapor deposited pollycrystalline silicon carbide films. Chem Vap Depos 8, 99–104 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Prabahar, M. Dhanam, CdS thin films from two different chemical baths-structural and optical analysis. J. Cryst. Growth 285, 41–48 (2005).  https://doi.org/10.1016/j.jcrysgro.2005.08.008 ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Jassim, A.A. Rashid, A. Zumaila, G. Abdella, A. Al, Influence of substrate temperature on the structural, optical and electrical properties of CdS thin films deposited by thermal evaporation. Results Phys. 3, 173–178 (2013).  https://doi.org/10.1016/j.rinp.2013.08.003 ADSCrossRefGoogle Scholar
  30. 30.
    K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott, D.M. Zhu, C. Wen, Quantitative analyses of MWCNT-Ti powder mixtures using raman spectroscopy: the influence of milling parameters on nanostructural evolution. Adv. Eng. Mater. 17, 1660–1669 (2015).  https://doi.org/10.1002/adem.201500142 CrossRefGoogle Scholar
  31. 31.
    D. Kim, Y.B. Chun, M.J. Ko, H. Lee, M. Cho, J.Y. Park, W. Kim, Microstructure evolution of a ZrC coating layer in TRISO particles during high-temperature annealing. J. Nucl. Mater. 479, 93–99 (2016).  https://doi.org/10.1016/j.jnucmat.2016.06.024 ADSCrossRefGoogle Scholar
  32. 32.
    S. Pellegrino, L. Thomé, A. Debelle, S. Miro, P. Trocellier, Radiation effects in carbides: TiC and ZrC versus SiC. Nucl. Inst. Methods Phys. Res. B 327, 103–107 (2014).  https://doi.org/10.1016/j.nimb.2013.11.046 ADSCrossRefGoogle Scholar
  33. 33.
    L. Hui, L. Zhang, Q. Zeng, H. Ren, K. Guan, Q. Liu, L. Cheng, First-principles study of the structural, vibrational, phonon and thermodynamic properties of transition metal. Solid State Commun. 151, 61–66 (2011).  https://doi.org/10.1016/j.ssc.2010.08.034 ADSCrossRefGoogle Scholar
  34. 34.
    H. Wipf, M.V. Klein, W.S. Williams, Vacancy-induced and two-phonon Raman scattering in ZrCx, NbCx, HfCx, and TaCx. Phys. Status Solidi 108, 489–500 (1981)CrossRefGoogle Scholar
  35. 35.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    E. Petrova, S. Tinchev, P. Nikolova, Interference effects on the ID/IG ratio of the Raman spectra of diamond-like carbon thin films. arXiv:1112.0897 (2011)
  37. 37.
    M. Patel, C.L.A. Ricardo, P. Scardi, P.B. Aswath, Morphology, structure and chemistry of extracted diesel soot—Part I: Transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and synchrotron X-ray diffraction study. Tribol Int 52, 29–39 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Biira, P.L. Crouse, H. Bissett, T.T. Hlatshwayo, E.G. Njoroge, J.T. Nel, T.P. Ntsoane, J.B. Malherbe, The role of ZrCl4 partial pressure on the growth characteristics of chemical vapour deposited ZrC layers. Ceram. Int. 43, 15133–15140 (2017).  https://doi.org/10.1016/j.ceramint.2017.08.042 CrossRefGoogle Scholar
  39. 39.
    A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).  https://doi.org/10.1103/PhysRevB.64.075414 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBusitema UniversityTororoUganda
  2. 2.Department of PhysicsUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Chemical EngineeringUniversity of PretoriaPretoriaSouth Africa
  4. 4.Applied Chemistry DivisionThe South African Nuclear Energy Corporation (Necsa)PretoriaSouth Africa

Personalised recommendations