Applied Physics A

, 125:182 | Cite as

Surface plasmon-enhanced luminescence of NaYFPO4:Dy3+ phosphor by Ag nanoparticles

  • Wenyu ZhaoEmail author
  • Huixia Wen
  • Jun Liu
  • Tianliang Zhou
  • Zhaofei Zhou


Ag nanoparticles (Ag-NPs) were adsorbed onto the surface of phosphor NaYFPO4:Dy3+ through an in situ reduction. The structure, morphology, composition, and optical properties were confirmed by X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence spectroscopy, respectively. The excitation peaks slightly shifted to long waves in the presence of Ag-NPs. Emission intensity increased by 115% owing to the enhancement of the local electromagnetic field near Ag-NPs because of the localized surface plasmon resonance. All these results indicated that the sample was a promising candidate for white LED devices.



This work was supported by the Natural Science Foundation of Inner Mongolia 2016MS0209.


  1. 1.
    Z.D. Hao, J.H. Zhang, X. Zhang, X.J. Wang, Opt. Mater. 33, 355 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    T. Wang, Y.H. Hu, L. Chen, X.J. Wang, M. He, J. Mater. Sci.: Mater. Electron. 27, 13235 (2016)Google Scholar
  3. 3.
    M. Ferhi, S. Toumi, K. Horchani-Naifer, M. Ferid, J. Alloy. Compd. 714, 144 (2017)CrossRefGoogle Scholar
  4. 4.
    Y.W. Seo, S.H. Park, S.H. Chang, J.H. Jeong, J.-S. Bae, Ceram. Int. 43, 8497 (2017)CrossRefGoogle Scholar
  5. 5.
    W.Y. Zhao, S.L. An, B. Fan, S.B. Li, Y.T. Dai, J. Lumin. 132, 953 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Heidelberg, 1988)CrossRefGoogle Scholar
  7. 7.
    W. Ye, Q. Huang, X. Jiao, X. Liu, G. Hu, J. Alloy. Compd. 719, 159 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Das, P. Phadke, N. Khichar, S. Chawla, Superlattice, Microst. 83, 642 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    R. Khan, P. Uthirakumar, K. Bae, S. Leem, I. Lee, Mater. Lett. 163, 8 (2016)CrossRefGoogle Scholar
  10. 10.
    R. Das, P. Phadke, N. Khichar, S. Chawla, Superlattice. Microst. 85, 658 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    W. Deng, L. Sudheendra, J.K. Zhao, J. Fu, D. Jin, I.M. Kennedy, E.M. Goldys, Nanotechnology. 22, 325604 (2011)CrossRefGoogle Scholar
  12. 12.
    M.G. Zhizhin, A.V. Olenev, F.M. Spiridonov, L.N. Komissarova, O.G. D’yachenko, J. Solid State Chem. 157, 8 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    O. Choi, K.K. Deng, N.-J. Kim, L. Ross, Y. Rao, Water Res. 42, 3066 (2008)CrossRefGoogle Scholar
  14. 14.
    I.I. Kindrat, B.V. Padlyak, B. Kukliński, A. Drzewiecki, V.T. Adamiv, J. Lumin. 204, 122 (2018)CrossRefGoogle Scholar
  15. 15.
    W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook (2nd ed, (CRC Press, Boca Raton, 2007)Google Scholar
  16. 16.
    A.E. Ragab, A.-S. Gadallah, T. DaRos, M.B. Mohamed, I.M. Azzouz, Opt. Commun. 314, 86 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Chem. Phys. Lett. 341, 1 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenyu Zhao
    • 1
    Email author
  • Huixia Wen
    • 1
  • Jun Liu
    • 2
  • Tianliang Zhou
    • 3
  • Zhaofei Zhou
    • 1
  1. 1.School of Chemistry and Chemical EngineeringInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.The Battery Research Institute of HeNanXinxiangChina
  3. 3.College of MaterialsXiamen UniversityXiamenChina

Personalised recommendations