Applied Physics A

, 125:193 | Cite as

Structural, spectroscopic and dielectric properties of Ca-doped BaTiO3

  • Mohamed Hassen KhedhriEmail author
  • Najmeddine Abdelmoula
  • Hamadi Khemakhem
  • Redouane Douali
  • Frederic Dubois


Ca-doped barium titanate BaTiO3 nanopowders were synthesized by the sol–gel process using barium acetate [Ba(CH3COO)2], calcium acetate [Ca(CH3COO)2] and titanium butoxide [Ti(OC4H9)4] as precursors. This method was adopted because it allows obtaining powders of high purity, chemical homogeneity and fine particle size, and crystallization is possible at very low temperatures (800 °C) compared to that used by the conventional solid-state reaction method. In this study, the characterization of nanopowders and ceramics using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), dielectric measurements, FTIR and Raman spectroscopy is carried out. The results revealed that the calcium ion incorporation had significant effect on structural and dielectric properties of barium titanate BaTiO3 (BT). XRD patterns suggested that nanopowders calcined at the temperature of 800 °C during 2 h could be crystallized into perovskite structure, with an average crystallite size in the range of 19.89–25.04 nm. Furthermore, it was observed that the Ca concentration variation affected the emission process with little displacement in the peak position. These results proved the optical band gap reduction by the presence of inter-band electron levels. Finally, the dielectric properties of the prepared samples were measured, revealing that the dielectric permittivity decreased with frequency increase, and the grain size and Curie temperature of the Ba1−xCaxTiO3 (BCT) ceramics sintered at 1200 °C were greatly affected by Ca substitution.



  1. 1.
    H.Y. Tian, Y. Wang, J. Miao, H.L.W. Chan, C.L. Choy, J. Alloys Compd. 431, 197–202 (2007)CrossRefGoogle Scholar
  2. 2.
    F. Boujelben, F. Bahri, C. Bouday, A. Maalej, H. Khemakhem, A. Simon, M. Maglione, J. Alloys Compd. 481, 559–562 (2009)CrossRefGoogle Scholar
  3. 3.
    Q. Xu, X.F. Zhang, Y.H. Huang, W. Chen, H.X. Liu, M. Chen, B.H. Kim, J. Alloys Compd. 488, 448–453 (2009)CrossRefGoogle Scholar
  4. 4.
    J.Y. Chen, Y.W. Tseng, C.L. Huang, J. Alloys Compd. 494, 205–209 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Cheng, M. Shen, Solid State Commun. 141, 587–590 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    D. Fu, M. Itoh, S. Koshihara, Appl. Phys. Lett. 93, 012904 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    X. Cheng, M. Shen, Mater. Res. Bull. 42, 1662–1668 (2007)CrossRefGoogle Scholar
  8. 8.
    F.V. Motta, A.P.A. Marques, J.W.M. Espinosa, P.S. Pizani, E. Longo, J.A. Varela, Curr. Appl. Phys. 10, 16–20 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Phys. Solid State 50, 886–893 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    V.D. Araujo, F.V. Motta, A.P.A. Marques, C.A. Paskocimas, M.R.D. Bomio, E. Longo, J.A. Varela, J. Mater. Sci. 49, 2875–2878 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, V.V. Fedotova, A.V. Trukhanov, S.G. Stepin, H. Szymczak, Crys. Rep. 53, 1177–1180 (2008)CrossRefGoogle Scholar
  12. 12.
    V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, Surf. Sci. 602, 3095–3099 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, I.B. Troitskaia, J. Solid State Chem. 195, 125–131 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H.P. Ji, L. Wang, M.S. Molokeev, N. Hirosaki, R.J. Xie, Z.H. Huang, Z.G. Xia, O.M.T. Kate, L.H. Liu, V.V. Atuchin, J. Mater. Chem. C 4, 6855–6863 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Cui, P. Yu, X. Wang, J. Alloys Compd. 459, 589–593 (2008)CrossRefGoogle Scholar
  16. 16.
    F.V. Motta, A.P.A. Marques, C.A. Paskocimas, M.R.D. Bomio, A.S.F. Santos, E.R. Leite, J.A. Varela, E. Longo, in Polymerization, 3nd edn. (INTECH, Rijeka, 2012), pp. 261–278Google Scholar
  17. 17.
    Y.Y. Yao, J.N. Cheng, P. Zhao, J. Chin. Ceram. Soc. 32, 751–754 (2004)Google Scholar
  18. 18.
    A.E. Souza, S.R. Teixeira, C.M. -Santos, W.H. Schreiner, P.N.L. Filho, E. Longo, J. Mater. Chem. C 2, 7056 (2014)CrossRefGoogle Scholar
  19. 19.
    R.S. Silva, M.I.B. Bernardi, A.C. Hernandes, J. Sol–Gel Sci. Technol. 42, 173–179 (2007)CrossRefGoogle Scholar
  20. 20.
    R.S. Silva, A.C. Hernandes, J.-C. M’Peko, Mater. Res. 15, 522–529 (2012)CrossRefGoogle Scholar
  21. 21.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, V.V. Atuchin, J. Solid State Chem. 228, 160–166 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, D.A. Ikonnikov, V.V. Atuchin, Dalton Trans. 45, 15541–15551 (2016)CrossRefGoogle Scholar
  23. 23.
    C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, Mater. Lett. 181, 38–41 (2016)CrossRefGoogle Scholar
  24. 24.
    R.S. Silvaa, L.M. Jesus, T.C. Oliveira, D.V. Sampaio, J.C.A. Santos, A.C. Hernandes, J. Eur. Ceram. Soc. 36, 4023–4030 (2016)CrossRefGoogle Scholar
  25. 25.
    M.R. Panigrahi, S. Panigrahi, Phys. B 405, 1787–1791 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    S.H. Jabarov, A.I. Mammadov, A.V. Trukhanov, J. Surf. Invest. 11, 223–225 (2017)CrossRefGoogle Scholar
  27. 27.
    X. Jin, D. Sun, Y. Zhang, J. Qian, J. Electrocer. 22, 285–290 (2009)CrossRefGoogle Scholar
  28. 28.
    J.A. Dawson, X. Li, C.L. Freeman, J.H. Harding, D.C. Sinclair, J. Mater. Chem. C 1, 1574–1582 (2013)CrossRefGoogle Scholar
  29. 29.
    X.Y. Wang, B. Lee, M. Hu, E.A. Payzant, D.A. Blom, J. Eur. Ceram. Soc. 26, 2319–2326 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Pinczuk, W. Tayler, E. Burstein, Solid state Commun. 5, 429 (1967)ADSCrossRefGoogle Scholar
  31. 31.
    M. Didomenico, S.H. Wemple, S.P.S. Porto, Phys. Rev. 174, 522–530 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, J. Raman Spectrosc. 38, 1288–1299 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    G. Busca, V. Buscaglia, M. Leoni, P. Nanni, Chem. Mater. 6, 955–961 (1994)CrossRefGoogle Scholar
  34. 34.
    Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Sci. Rep. 7, 42274 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)CrossRefGoogle Scholar
  36. 36.
    F.A. Rabuffetti, R.L. Brutchey, J. Am. Chem. Soc. 134, 9475–9487 (2012)CrossRefGoogle Scholar
  37. 37.
    L. Wang, H. Kang, D. Xue, C. Liu, J. Crys. Growth 311, 605–607 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Y.D. Hou, L. Hou, J.F. Yang, M.K. Zhu, H. Wang, H. Yan, Acta Chim. Sinica 10, 950–954 (2007)Google Scholar
  39. 39.
    Y.V. Kolen’ko, K.A. Kovnir, I.S. Neira, T. Taniguchi, T. Ishigaki, T. Watanabe, N. Sakamoto, M. Yoshimura, J. Phys. Chem. C 111, 7306–7318 (2007)CrossRefGoogle Scholar
  40. 40.
    X.S. Wang, L.L. Zhang, H. Liu, J.W. Zhai, X. Yao, Mater. Chem. Phys. 112, 675–678 (2008)CrossRefGoogle Scholar
  41. 41.
    W.F. Zhang, Z. Yin, M.S. Zhang, Z.L. Du, W.C. Chen, J. Phys. Cond. Mater. 11, 5655–5660 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    K. Asokan, J.C. Jan, J.W. Chiou, W.F. Pong, P.K. Tseng, I.N. Lin, J. Synchrot. Radiat. 8, 839–841 (2001)CrossRefGoogle Scholar
  43. 43.
    F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)CrossRefGoogle Scholar
  44. 44.
    R.M. Mahani, I.K. Battisha, M. Aly, A.B. Abou-Hamad, J. Alloys Compd. 508, 354–358 (2010)CrossRefGoogle Scholar
  45. 45.
    M. Nayak, T.Y. Tseng, J. Thin Solid Films 408, 194–199 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, Mater. Lett. 62, 3666–3669 (2008)CrossRefGoogle Scholar
  47. 47.
    I.K. Battisha, A.B. Abou Hamad, R.M. Mahani, Phys. B 404, 2274–2279 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    I.E. Dubois, S. Holgersson, S. Allard, M.E. Malmstrom, W.-R. Interaction, B. Torres-Alvarado (eds.), Taylor & Francis Group, London, 717–720 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohamed Hassen Khedhri
    • 1
    Email author
  • Najmeddine Abdelmoula
    • 1
  • Hamadi Khemakhem
    • 1
  • Redouane Douali
    • 2
  • Frederic Dubois
    • 2
  1. 1.Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM)Université du Littoral Côte d’Opale (ULCO)CalaisFrance

Personalised recommendations