Advertisement

Applied Physics A

, 125:180 | Cite as

Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys

  • Tiandang Huang
  • Hui Jiang
  • Yiping LuEmail author
  • Tongmin Wang
  • Tingju Li
Article

Abstract

This study aimed to design and prepare the following four kinds of refractory high-entropy alloys (RHEAs): TiZrHf, TiZrHfSc, TiZrHfY, and TiZrHfScY. All the four RHEAs showed a hexagonal close-packed (HCP)-based structure. Both the strength and ductility increased in the TiZrHfSc alloy compared with the TiZrHf alloy because of the addition of Sc element and the formation of a fine needle-like lamellar structure in the former. The mechanical properties of TiZrHfY and TiZrHfScY alloys decreased after the addition of Y element because of the segregation. The conductivity of TiZrHf, TiZrHfSc, TiZrHfY, and TiZrHfScY alloys decreased compared with that of pure Ti, Zr, Hf, Sc, and Y elements. However, their resistivity was comparable to the traditional electrical resistivity of the alloys at room temperature because of the serious lattice distortion in the HEAs. All the four alloys showed a typical paramagnetic behavior. These characteristics make the alloys suitable for industrial applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51671044, 51822402 and 51574058), Dalian Support Plan for Innovation of High-level Talents (Top and Leading Talents, 2015R013), the Fundamental Research Funds for the Central Universities (DUT16ZD206), Dalian Support Plan for Innovation of High-level Talents (Youth Technology Stars, 2016RQ005).

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)CrossRefGoogle Scholar
  2. 2.
    B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 375, 213 (2004)CrossRefGoogle Scholar
  3. 3.
    Z.M. Jiao, Z.H. Wang, R.F. Wu, J.W. Qiao, Appl. Phys. Mater. Sci. Process. 122, 5 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Appl. Phys. Mater. Sci. Process. 119, 291 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Z.Y. Rao, X. Wang, Q.J. Wang, T. Liu, X.H. Chen, L. Wang, X.D. Hui, Adv. Eng. Mater. 19, 10 (2017)CrossRefGoogle Scholar
  6. 6.
    D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)CrossRefGoogle Scholar
  7. 7.
    M.C. Gao, C.S. Carney, A.N. Dogan, P.D. Jablonksi, J.A. Hawk, D.E. Alman, Jom 67, 2653 (2015)CrossRefGoogle Scholar
  8. 8.
    C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 62, 76 (2015)CrossRefGoogle Scholar
  9. 9.
    C.H. Chang, M.S. Titus, J.W. Yeh, Adv. Eng. Mater. 20, 8 (2018)CrossRefGoogle Scholar
  10. 10.
    M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 47A, 3322 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    J. Luznik, P. Kozelj, S. Vrtnik, A. Jelen, Z. Jaglicic, A. Meden, M. Feuerbacher, J. Dolinsek, Phys. Rev. B 92, 14 (2015)CrossRefGoogle Scholar
  12. 12.
    K.V. Yusenko, S. Riva, P.A. Carvalho, M.V. Yusenko, S. Arnaboldi, A.S. Sulthikh, M. Hanfland, S.A. Gromilov, Scripta Mater. 138, 22 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, Mater. Des. 96, 10 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, Jom 66, 1984 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Soler, A. Evirgen, M. Yao, C. Kirchlechner, F. Stein, M. Feuerbacher, D. Raabe, G. Dehm, Acta Mater. 156, 86 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Feuerbacher, M. Heidelmann, C. Thomas, Mater. Res. Lett. 3, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    P.F. Yu, L.J. Zhang, J.L. Ning, M.Z. Ma, X.Y. Zhang, Y.C. Li, P.K. Liaw, G. Li, R.P. Liu, Mater. Lett. 196, 137 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Vrtnik, J. Luznik, P. Kozelj, A. Jelen, J. Luzar, Z. Jaglicic, A. Meden, M. Feuerbacher, J. Dolinsek, J. Alloy. Compd. 742, 877 (2018)CrossRefGoogle Scholar
  19. 19.
    L. Rogal, P. Bobrowski, F. Kormann, S. Divinski, F. Stein, B. Grabowski, Sci. Rep. 7, 14 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, Intermetallics 69, 103 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Rogal, F. Czerwinski, P.T. Jochym, L. Litynska-Dobrzynska, Mater. Des. 92, 8 (2016)CrossRefGoogle Scholar
  22. 22.
    S.L. Pramod, A.K.P. Rao, B.S. Murty, S.R. Bakshi, Mater. Des. 78, 85 (2015)CrossRefGoogle Scholar
  23. 23.
    S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Barner, J. Solid State Chem. 169, 85 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B 42, 51 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, H. Szymczak, Jetp Lett. 83, 33 (2006)CrossRefGoogle Scholar
  26. 26.
    A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 393, 253 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Alloy. Compd. 689, 383 (2016)CrossRefGoogle Scholar
  28. 28.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 417, 130 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, J. Phys. Condens. Matter 17, 6495 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, J. Low Temp. Phys. 149, 185 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104 (2008)Google Scholar
  32. 32.
    S. Tian, X.C. Li, Z.T. Liu, Physical Property of Metal, Aviation Industry Press, Beijing, 1994Google Scholar
  33. 33.
    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, J. Phys. Condens. Matter 15, 1783 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, J. Exp. Theor. Phys. 111, 209 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, J. Exp. Theor. Phys. 113, 819 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tiandang Huang
    • 1
  • Hui Jiang
    • 2
  • Yiping Lu
    • 1
    Email author
  • Tongmin Wang
    • 1
  • Tingju Li
    • 1
  1. 1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.College of mechanical and electronic engineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations