Applied Physics A

, 125:221 | Cite as

Influence of Er3+ ions on the physical, structural, optical, and thermal properties of ZnO–Li2O–P2O5 glasses

  • M. Shwetha
  • B. EraiahEmail author


Er3+ doped zinc lithium phosphate glass samples were synthesized by the very simple melt quenching method. The obtained X-ray diffraction patterns specify that the prepared glass samples exhibit glassy nature. The physical properties like packing density, molar volume, density, oxygen packing density, interionic distance, field strength, rare earth ion concentration, and polaron radius were calculated using appropriate formulae. DTA curve was analysed to evaluate the crystallization temperature, melting temperature, and glass transition temperature and hence study the thermal properties. Fourier transform infrared spectrum was recorded to examine the functional groups in the glass and study the structural characteristics of the glass. It showed the presence of symmetrical and asymmetrical stretching vibration modes of P–O–P linkages, bending modes of P–O in PO4, bending and stretching vibrations of OH groups and P–O–H water absorbance in the glasses. The absorption spectra of the prepared glasses in the UV–visible region (wavelength 200–1100 nm) were taken to study the optical properties of the glasses. The urbach energy and optical energy bandgap values are determined using Davis–Mott method. The refractive index of all the prepared glass samples is also measured and these values are used to determine the corresponding molar refraction, the molecular polarizability of oxide ions, dielectric constant, reflection loss, metallization criterion, electronic polarizability of the oxide ions, interaction parameter, electronegativity, optical basicity, and electric susceptibility of all the glass samples using appropriate formulae.



  1. 1.
    Z. Pan, S.H. Morgan, K. Dyer, A. Ueda, Host dependent optical transitions of Er3+ ions in lead–germanate and lead tellurium germanate glasses. J. Appl. Phys. 79, 8906–8913 (1996)CrossRefGoogle Scholar
  2. 2.
    J. Fernandez, I. Iparraguirre, R. Balda, J. Azkargorta, M. Voda, J.M. Fernandez-Navarro, Laser action and upconversion of Nd3+ in lead–niobium–germanate bulk glass. Opt. Mater. 25, 185–191 (2004)CrossRefGoogle Scholar
  3. 3.
    T.P. Tang, C.M. Lee, F.C. Yen, The photoluminescence of SrAl2O4: Sm phosphors. Ceram. Int. 32, 665–671 (2006)CrossRefGoogle Scholar
  4. 4.
    G.M. Kumar, B.N.S. Bhaktha, D.N. Rao, Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass. Opt.Mater. 28, 1266–1270 (2006)CrossRefGoogle Scholar
  5. 5.
    W.A. Pisarski, J. Pisarska, R. Lisiecki, Up-conversion processes of rare earth ions in heavy metal glasses. J. Rare Earths 29, 1192–1194 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Tanabe, Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals. Opt. Mater. 19(3, 343–349 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Mogus-Milankovic, V. Licina, S.T. Reis, D.E. Day, Electronic relaxation in zinc iron phosphate glasses. J. Non Cryst. Solids 353, 2659–2666 (2007)CrossRefGoogle Scholar
  8. 8.
    S.N. Sdiri, H. Elhouichet, C. Barthou, M. Ferid, Spectroscopic properties of Er3+ and Yb3+ doped phosphate–borate glasses. J. Mol. Struct 1010, 85–90 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Jiang, T. Luo, B.C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, N. Peyghambarian, Er3+ doped phosphate glasses for fiber ampliers with high gain per unit length. J. Non Cryst. Solids 263/264, 364–368 (2000)CrossRefGoogle Scholar
  10. 10.
    J.A. Caird, A.J. Romponi, P.R. Staves, Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses. J. Opt. Soc. Am. B 8, 1391–1403 (1991)CrossRefGoogle Scholar
  11. 11.
    M.I. Abd El-Ati, A.A. Higazy, Electrical conductivity and optical properties of gamma-irradiated niobium phosphate glasses. J. Mater. Sci. 35, 6175–6180 (2000)CrossRefGoogle Scholar
  12. 12.
    X.C. Yu, F. Song, W.T. Wang, L.J. Luo, C.G. Ming, Effects of Ce3+ on the spectroscopic properties of transparent phosphate glass ceramics co-doped with Er3+/Yb3+. Opt. Commun. 282, 2045–2048 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Wang, H. Song, X. Kong, H. Peng, B. Sun, B. Chen, J. Zhang, W. Xu, H. Xia, Fluorescence properties of trivalent europium doped in various niobate codoped glasses. J. Appl. Phys. 93, 1482–1486 (2003)CrossRefGoogle Scholar
  14. 14.
    Z. Lin, C. Qi, S. Dai, Y. Jiang, L. Hu, Spectra and laser properties of Er3+, Yb3+: phosphate glasses. Opt. Mater. 21, 789–794 (2003)CrossRefGoogle Scholar
  15. 15.
    T.I. Suratwala, R.A. Steele, G.D. Wike, J.H. Campbell, K. Takenchi, Effects of OH content, water vapor pressure, and temperature on sub-critical crack growth in phosphate glass. J. Non Cryst. Solids 263/264, 213–227 (2000)CrossRefGoogle Scholar
  16. 16.
    P. Pascuta, M. Bosca, G. Borodi, E. Culea, Thermal, structural and magnetic properties of some zinc phosphate glasses doped with manganese ions. J. Alloys Compd. 509, 4314–4319 (2011)CrossRefGoogle Scholar
  17. 17.
    C.E. Smith, R.K. Brow, The properties and structure of zinc magnesium phosphate glasses. J. Non Cryst. Solids 390, 51–58 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Aida, T. Komatsu, V. Dimitrov, Thermal stability, electronic polarisability and optical basicity of ternary tellurite glasses. Phys. Chem. Glasses 42(2)), 103–111 (2001)Google Scholar
  19. 19.
    P.W. McMillan, Glass Ceramics, 2nd edn. (Academic, London, 1979)Google Scholar
  20. 20.
    N.A. Ghonieum, H.A. Elbatal, A.M. Abdelghany, I.S. Ali, Shielding behavior of V2O5 doped lead borate glasses towards gamma irradiation. J. Alloys compd. 509, 6913–6919 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.B. Peng, D.E. Day, Y.B. Peng, D.E. Day, High thermal expansion phosphate glasses. Part 1. Glass Technol. 32, 166–173 (1991)Google Scholar
  22. 22.
    W.J. Chung, A. Jha, S. Shen, P. Joshi, The effect of Er3+-ion concentration on the Er3+: 4 I13/24 I15/2 transition in tellurite glasses. Philos. Mag. 84, 1197–1207 (2004)CrossRefGoogle Scholar
  23. 23.
    G.A. Kumar, E. DelaRosa, H. Desirena, Radiative and non-radiative spectroscopic properties of Er3+ ion in tellurite glass. Opt.Commun. 260, 601–606 (2006)CrossRefGoogle Scholar
  24. 24.
    H. Chen, Y.H. Liu, Y.F. Zhou, Z.H. Jiang, Spectroscopic properties of Er3+-doped tellurite glass for 1.55 µm optical amplifier. J. Alloys Compd. 397, 286–290 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Rolli, M. Montagna, S. Chaussedent, A. Monteil, V.K. Tikhomirov, M. Ferrari, Erbium-doped tellurite glasses with high quantum efficiency and broadband stimulated emission cross section at 1.5 µm. Opt. Mater. 21, 743–748 (2003)CrossRefGoogle Scholar
  26. 26.
    S. Hu, Z. Yang, S. Dai, G. Wang, L. Hu, Z. Jiang, Effect of Bi2O3 on spectroscopic properties of Er3+-doped lead oxyfluorosilicate glasses for broadband optical amplifiers. J. Non Cryst. Solids 347, 197–203 (2004)CrossRefGoogle Scholar
  27. 27.
    N.F. Mott, E.A. Davis, Electronic Process in the Non-crystalline Materials, 2nd edn. (Clarendon Press/Oxford University, New York, 1979)Google Scholar
  28. 28.
    V.C. Veeranna Gowda, Effect of Bi3+ ions on physical, thermal, spectroscopic and optical properties of Nd3+ doped sodium diborate glasses.. Physica B 426, 58–64 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Inaba, S. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82, 3501–3507 (1999)CrossRefGoogle Scholar
  30. 30.
    M.A. Algradee, A. Elwhab, B. Alwany, M. Sultan, M. Elgoshimy, Q. Almoraisy, Physical and optical properties for Nd2O3 doped lithium–zinc–phosphate glasses. Optik 142, 13–22 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Abdel-Baki, F.A. Abdel-Wahab, F. El-Diasty, One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J. Appl. Phys. 111, 073506–0735010 (2012)CrossRefGoogle Scholar
  32. 32.
    D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 85th edn. (CRC Press, Boca Raton, 2004)Google Scholar
  33. 33.
    J.E. Shelby, Properties and structure of lithium germinate glasses. Phys. Chem. Glasses 28(6), 262–268 (1987)Google Scholar
  34. 34.
    B. Karthikeyan, S. Mohan, Structural, optical and glass transition studies on Nd3+-doped lead bismuth borate glasses. Phys. B 334, 298–302 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Hruby, Evaluation of glass-forming tendency by means of DTA. Czech. J. Phys. B 22(11), 1187–1193 (1972)MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Hruby, Glass-forming tendency in the GeSx system. Czech. J. Phys. B 23(11), 1263–1272 (1973)CrossRefGoogle Scholar
  37. 37.
    V. Kumar, S. Sharma, O.P. Pandey, K. Singh, Thermal and physical properties of 30SrO–40SiO2–20B2O3–10A2O3 (A = La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC. Solid State Ionics 181, 79–85 (2010)CrossRefGoogle Scholar
  38. 38.
    W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948)CrossRefGoogle Scholar
  39. 39.
    M.T. Clavaguera-Mora, Glassy materials: thermodynamic and kinetic quantities. J. Alloys Compd. 220, 197–205 (1995)CrossRefGoogle Scholar
  40. 40.
    M. Saad, M. Poulin, Glass forming ability criterion. Mater. Sci. Forum 19–20, 11–18 (1987)CrossRefGoogle Scholar
  41. 41.
    N. Mehta, R.S. Tiwari, A. Kumar, Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater. Res. Bull. 41, 1664–1672 (2006)CrossRefGoogle Scholar
  42. 42.
    E.R. Shaaban, I.S. Yahia, M. Fadel, Effect of composition on the thermal stability for Ge–In–Se intermediate compound. J. Alloys Compd. 469, 427–432 (2009)CrossRefGoogle Scholar
  43. 43.
    P.Y. Shih, Properties and FTIR spectra of lead phosphate glasses for nuclear waste immobilization. Mater. Chem. Phys. 80, 299–304 (2003)CrossRefGoogle Scholar
  44. 44.
    L. Montagne, G. Palavit, G. Mairesse, 31P MAS NMR and FTIR analysis of (50 – x/2) Na2O. xBi2O3.(50 – x/2) P2O5 glasses. Phys. Chem. Glasses 37, 206–211 (1996)Google Scholar
  45. 45.
    H.S. Liu, T.S. Chin, S. W. Yung, FTIR and XPS studies of low-melting PbO-ZnO-P2O5 glasses. Mater. Chem. Phys. 50, 1–10 (1997)CrossRefGoogle Scholar
  46. 46.
    J.O. Byun, B.H. Kim, K.S. Hong, H.J. Jung, S.W. Lee, A.A. Izyneev, Properties and structure of RO-Na20-A1203-P205 (R = Mg, Ca, Sr, Ba) glasses. J. Non Cryst. Solids 190, 288–295 (1995)CrossRefGoogle Scholar
  47. 47.
    A.A. El-Kheshen, F.A. Khaliafa, E.A. Saad, R.L. Elwan, Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceram. Int. 34, 1667–1673 (2008)CrossRefGoogle Scholar
  48. 48.
    M.A. Marzouk, H.A. ElBatal, A.M. Abdel Ghany, F.M. Ezz Eldin, Ultraviolet, visible, ESR, and infrared spectroscopic studies of CeO2-doped lithium phosphate glasses and effect of gamma irradiation. J. Mol. Struct. 997, 94–102 (2011)CrossRefGoogle Scholar
  49. 49.
    M.A. Ouis, H.A. El-Batal, M.A. Azooz, A.M. Abdelghany, Characterization of WO3-doped borophosphate glasses by optical, IR and ESR spectroscopic techniques before and after subjecting to gamma irradiation. Indian J. Pure Appl. Phys. 51, 11–17 (2013)Google Scholar
  50. 50.
    Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, L.H. Cao, B. Dai, Raman and FTIR spectra of iron phosphate glasses containing cerium. J. Mol. Struct. 992, 84–88 (2011)CrossRefGoogle Scholar
  51. 51.
    Y.L. Ruijie Cao, Y. Tian, F. Huang, Y. Guo, S. Xu, J. Zhang, Spectroscopy of thulium and holmium co-doped silicate glasses. Opt. Mater Express 6(7), 2252–2263 (2016)CrossRefGoogle Scholar
  52. 52.
    W.T. Carnall, P.R. Field, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968)CrossRefGoogle Scholar
  53. 53.
    N. Vijaya, P. Babu, V. Venkatramu, C.K. Jayasankar, S.F. León-Luis, U.R. Rodríguez-Mendoza, I.R. Martín, V. Lavín, Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors. Sens. Actuators B 186, 156–164 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Jorgenson, B.R. Judd, Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8, 281–290 (1964)CrossRefGoogle Scholar
  55. 55.
    H.A.A. Sidek, I.T. Collier, R.N. Hampton, G.A. Saunders, B. Bridge, Electrical conductivity and dielectric constant of samarium phosphate glasses. Philos. Mag. B 59, 221–232 (1989)CrossRefGoogle Scholar
  56. 56.
    E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. J. Philos. Mag. 22, 903–922 (1970)CrossRefGoogle Scholar
  57. 57.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953)CrossRefGoogle Scholar
  58. 58.
    H. Mahr, Ultraviolet absorption of KI diluted in KCl crystals. Phys. Rev. 125, 1510–1516 (1962)CrossRefGoogle Scholar
  59. 59.
    S.L.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4, 25–35 (2012)Google Scholar
  60. 60.
    T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Stat. Solidi (b) 131, 415–427 (1985)CrossRefGoogle Scholar
  61. 61.
    X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B 392, 132–136 (2007)CrossRefGoogle Scholar
  62. 62.
    S.S. Sastry, B.R. Venkateswara Rao, Structural and optical properties of vanadium doped alkaline earth lead zinc phosphate glasses. Indian J. Pure Appl. Phys. 52, 491–498 (2014)Google Scholar
  63. 63.
    M. Algradee, M. Sultan, O.M. Samir, A. Elwhab, B. Alwany, Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium–zinc–phosphate glasses. Appl. Phys. A 123(524), 1–12 (2017)Google Scholar
  64. 64.
    J.A. Duffy, A common optical basicity scale for oxide and fluoride glasses. J. Non Cryst. Solids 30, 35–39 (1989)CrossRefGoogle Scholar
  65. 65.
    V. Dimitrov, T. Komatsu, Effect of interionic interaction on the electronic polarizability, optical basicity and binding energy of simple oxides. J. Ceram. Soc. Jpn. 107, 1012–1018 (1999)CrossRefGoogle Scholar
  66. 66.
    V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741–1745 (1996)CrossRefGoogle Scholar
  67. 67.
    V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163, 100–112 (2002)CrossRefGoogle Scholar
  68. 68.
    V. Dimitrov, T. Komatsu, Effect of interionic interaction on the electronic polarizability, optical basicity and binding energy of simple oxides. J. Ceram. Soc. Jpn. 107, 1012–1018 (1999)CrossRefGoogle Scholar
  69. 69.
    J. Yamashita, T. Kurosawa, The theory of the dielectric constant of ionic crystals III. J. Phys. Soc. Jpn. 10, 610–633 (1955)CrossRefGoogle Scholar
  70. 70.
    V. Dimitrov, T. Komatsu, Interionic interactions, electronic polarizability and optical basicity of oxide glasses. J. Ceram. Soc. Jpn. 108, 330–338 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBangalore UniversityBangaloreIndia

Personalised recommendations