Advertisement

Applied Physics A

, 125:188 | Cite as

A single step unique microstructural growth of porous colossal dielectric constant titanium oxide

  • Sunil Meti
  • Sagar Prutvi Hosangadi
  • M. R. Rahman
  • Udaya K. BhatEmail author
Article
  • 70 Downloads

Abstract

New microstructure of TiO2 grown in hydrothermal process is reported on. The influence of hydrothermal process parameters, such as heating temperature, on growth dynamics is also reported. The improvement in surface area and crystallinity are reached by the hydrothermal process, as compared to other growth techniques. The synthesized TiO2 is characterized by XRD technique and subjected to Rietveld analysis. The results indicate that the obtained TiO2 is of tetragonal structure. The results of other characterization techniques such as micrography, Raman spectroscopy and TGA are also reported. The obtained TiO2 is tested for its electrical properties and it shows good dielectric strength in the flat band region from 40 Hz to 1 MHz.

Notes

Acknowledgements

Mr Sunil Meti is thankful to NITK, Surathkal, India and MHRD India for supporting the research in form of the Institute Research Fellowship. The Authors would like to acknowledge the Central Surface Analytical Facility of IIT Bombay for XPS studies. Authors also extend regards to Ms Rashmi for her assistance in SEM characterization.

References

  1. 1.
    J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).  https://doi.org/10.3762/bjnano.9.98 CrossRefGoogle Scholar
  2. 2.
    Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO 2 nanobelts. Adv. Mater. 27, 2557–2582 (2015).  https://doi.org/10.1002/adma.201405589 CrossRefGoogle Scholar
  3. 3.
    M. Dahl, Y. Liu, Y. Yin, Composite titanium dioxide nanomaterials nanomaterials. Chem. Rev. 114, 9853–9889 (2014).  https://doi.org/10.1021/cr400634p CrossRefGoogle Scholar
  4. 4.
    G. Wang, X. Huang, P. Jiang, Mussel-inspired fluoro-polydopamine functionalization of titanium dioxide nanowires for polymer nanocomposites with significantly enhanced energy storage capability. Sci. Rep. 7, 1–12 (2017).  https://doi.org/10.1038/srep43071 CrossRefGoogle Scholar
  5. 5.
    C.A. Grabowski, S.P. Fillery, H. Koerner, M. Tchoul, L. Drummy, C.W. Beier, R.L. Brutchey, M.F. Durstock, R.A. Vaia, Dielectric performance of high permitivity nanocomposites: impact of polystyrene grafting on BaTiO3 and TiO2. Nanocomposites 2 (2016) 117–124.  https://doi.org/10.1080/20550324.2016.1223913 CrossRefGoogle Scholar
  6. 6.
    B.V. Prasad, G.N. Rao, J.W. Chen, D. Suresh, Babu, Abnormal high dielectric constant in SmFeO3 semiconductor ceramics. Mater. Res. Bull. 46, 1670–1673 (2011).  https://doi.org/10.1016/j.materresbull.2011.06.001 CrossRefGoogle Scholar
  7. 7.
    A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 99, 150–159 (2006).  https://doi.org/10.1016/J.MATCHEMPHYS.2005.09.086 CrossRefGoogle Scholar
  8. 8.
    B. Gupta, P. Pujar, S.S. Mal, D. Gupta, S. Mandal, Retention of high dielectric constant sodium beta alumina via solution combustion: Role of aluminum ions complexation with fuel. Ceram. Int. 44, 1500–1511 (2018).  https://doi.org/10.1016/J.CERAMINT.2017.10.061 CrossRefGoogle Scholar
  9. 9.
    S. Xiong, Y. Tang, H.S. Ng, X. Zhao, Z. Jiang, Z. Chen, K.W. Ng, S. Chye, J. Loo, Specific surface area of titanium dioxide (TiO2) particles influences cyto- and photo-toxicity. Toxicology 304 (2013) 132–140.  https://doi.org/10.1016/j.tox.2012.12.015 CrossRefGoogle Scholar
  10. 10.
    S. Meti, U.B. K, M.R. Rahman, M. Jayalakshmi, Photocatalytic behaviour of nanocomposites of sputtered titanium oxide film on graphene oxide nanosheets. Am. J. Mater. Sci. 5, 12–18 (2015).  https://doi.org/10.5923/c.materials.201502.03 CrossRefGoogle Scholar
  11. 11.
    V. Štengl, S. Bakardjieva, T.M. Grygar, J. Bludská, M. Kormunda, TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem. Cent. J. 7, 41 (2013).  https://doi.org/10.1186/1752-153X-7-41 CrossRefGoogle Scholar
  12. 12.
    L. Chu, Z. Qin, J. Yang, X. Li, Anatase TiO2 nanoparticles with exposed {001} facets for efficient dye-sensitized solar cells. Sci. Rep. 5, 12143 (2015).  https://doi.org/10.1038/srep12143 CrossRefGoogle Scholar
  13. 13.
    J. Tao, X. Dong, H. Zhu, H. Tao, P. He, Enhanced photocatalytic properties of ultra-long nanofiber synthesized from pure titanium powders. Rare Met. 31, 39–42 (2012).  https://doi.org/10.1007/s12598-012-0459-x CrossRefGoogle Scholar
  14. 14.
    J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, G. Shao, Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance. Appl. Surf. Sci. 319, 75–82 (2014).  https://doi.org/10.1016/J.APSUSC.2014.07.054 CrossRefGoogle Scholar
  15. 15.
    W.J. Lee, Y.M. Sung, Synthesis of anatase nanosheets with exposed (001) facets via chemical vapor deposition. Cryst. Growth Des. 12, 5792–5795 (2012).  https://doi.org/10.1021/cg301317j CrossRefGoogle Scholar
  16. 16.
    K.R.N. Pai, G.S. Anjusree, T.G. Deepak, D. Subash, S.V. Nair, A.S. Nair, High surface area TiO2 nanoparticles by a freeze-drying approach for dye-sensitized solar cells. RSC Adv. 4, 36821–36827 (2014).  https://doi.org/10.1039/C4RA04226C CrossRefGoogle Scholar
  17. 17.
    M. Ben Yahia, F. Lemoigno, T. Beuvier, J. Filhol, M. Richard-Plouet, L. Brohan, M.L. Doublet, Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations, J. Chem. Phys. 130 (2009).  https://doi.org/10.1063/1.3130674
  18. 18.
    J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO 2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658–686 (2017).  https://doi.org/10.1016/j.apsusc.2016.09.093 CrossRefGoogle Scholar
  19. 19.
    I.E. Kalabin, T.I. Grigorieva, L.D. Pokrovsky, D.V. Sheglov, D.I. Shevtsov, V.V. Atuchin, Nanofaceting of LiNbO3X-cut surface by high temperature annealing and titanium diffusion. Opt. Commun. 221, 359–363 (2003).  https://doi.org/10.1016/S0030-4018(03)01537-2 CrossRefGoogle Scholar
  20. 20.
    V.V. Atuchin, T.I. Grigorieva, I.E. Kalabin, V.G. Kesler, L.D. Pokrovsky, D.I. Shevtsov, Comparative analysis of electronic structure of Ti:LiNbO3 and LiNbO3 surfaces. J. Cryst. Growth 275, e1603–e1607 (2005).  https://doi.org/10.1016/J.JCRYSGRO.2004.11.176 CrossRefGoogle Scholar
  21. 21.
    Z. Hu, L. Zhao, H. Guo, S. Wang, W. Li, X. Yang, B. Dong, L. Wan, Novel double-layered photoanodes based on porous-hollow TiO-microspheres and La(OH)3:Yb3+/Er3 + for highly efficient dye-sensitized solar cells, J. Mater. Sci. Mater. Electron. 1–9 (2018).  https://doi.org/10.1007/s10854-018-0283-7
  22. 22.
    V.V. Atuchin, M.S. Lebedev, I.V. Korolkov, V.N. Kruchinin, E.A. Maksimovskii, S.V. Trubin, Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1–xO2 (0 ≤ x ≤ 1) films prepared by the ALD method, J. Mater. Sci. Mater. Electron. 1–12 (2018).  https://doi.org/10.1007/s10854-018-0351-z
  23. 23.
    C.P. Sajan, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Cao, TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 9, 3–27 (2016).  https://doi.org/10.1007/s12274-015-0919-3 CrossRefGoogle Scholar
  24. 24.
    F. Jin, H. Tong, L. Shen, K. Wang, P.K. Chu, Micro-structural and dielectric properties of porous TiO2 films synthesized on titanium alloys by micro-arc discharge oxidization. Mater. Chem. Phys. 100, 31–33 (2006).  https://doi.org/10.1016/j.matchemphys.2005.12.001 CrossRefGoogle Scholar
  25. 25.
    I.B. Troitskaia, T.A. Gavrilova, V.V. Atuchin, Structure and micromorphology of titanium dioxide nanoporous microspheres formed in water solution. Phys. Procedia. 23, 65–68 (2012).  https://doi.org/10.1016/J.PHPRO.2012.01.017 CrossRefGoogle Scholar
  26. 26.
    V.N. Kruchinin, T.V. Perevalov, V.V. Atuchin, V.A. Gritsenko, A.I. Komonov, I.V. Korolkov, L.D. Pokrovsky, C.W. Shih, A. Chin, Optical properties of TiO2 films deposited by reactive electron beam sputtering. J. Electron. Mater. 46, 6089–6095 (2017).  https://doi.org/10.1007/s11664-017-5552-3 CrossRefGoogle Scholar
  27. 27.
    G.E. Cheng, Y. Zhang, H.Z. Ke, T.T. Hao, Y.Z. Wang, Hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposite with enhanced photocatalytic activity. Micro Nano Lett. 9, 932–934 (2014).  https://doi.org/10.1049/mnl.2014.0238 CrossRefGoogle Scholar
  28. 28.
    B.S. Avinash, V.S. Chathurmukha, C.S. Naveen, M.P. Rajeeva, H.S. Jayanna, A.R. Lamani, Influence of particle size on band gap and dielectric properties of TiO2 nanomaterials, in: AIP Conf. Proc. (A.I.P. Publishing LLC, 2016), p. 20347.  https://doi.org/10.1063/1.4946398
  29. 29.
    V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, V.V. Atuchin, Conduction mechanism of metal-TiO2–Si structures. Chinese J. Phys. 55, 59–63 (2017).  https://doi.org/10.1016/J.CJPH.2016.08.011 CrossRefGoogle Scholar
  30. 30.
    D.V. Gritsenko, S.S. Shaĭmeev, V.V. Atuchin, T.I. Grigor’eva, L.D. Pokrovskiĭ, O.P. Pchelyakov, V.A. Gritsenko, A.L. Aseev, V.G. Lifshits, Two-band conduction in TiO2. Phys. Solid State 48, 224–228 (2006).  https://doi.org/10.1134/S1063783406020053 CrossRefGoogle Scholar
  31. 31.
    V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, V.V. Atuchin, Photoelectrical characteristics of TiO2-N-SI heterostructures, microw. Opt. Technol. Lett. 58, 1113–1116 (2016).  https://doi.org/10.1002/mop.29737 CrossRefGoogle Scholar
  32. 32.
    B.H. Toby, Expgui, EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). https://ncnr.nist.gov/programs/crystallography/software/EXPGUI_reprint.pdf. Accessed 7 Feb 2018
  33. 33.
    A.C. Larson, R.B. Von Dreele, LAUR 86–748 © GENERAL STRUCTURE ANALYSIS SYSTEM, LAUR, (2004). http://11bm.Xray.aps.anl.gov/documents/GSASManual.pdf. Accessed 7 Feb 2018
  34. 34.
    M.I. Ahmad, D.G. Van Campen, J.D. Fields, J. Yu, V.L. Pool, P.A. Parilla, D.S. Ginley, M.F.A.M. Van Hest, M.F. Toney, Rapid thermal processing chamber for in-situ X-ray diffraction. Rev. Sci. Instrum. 86, 13902 (2015).  https://doi.org/10.1063/1.4904848 CrossRefGoogle Scholar
  35. 35.
    S. Sivasankaran, M.J. Kishor Kumar, A novel sonochemical synthesis of nano-size silicon nitride and titanium carbide. Ceram. Int. 41, 11301–11305 (2015).  https://doi.org/10.1016/J.CERAMINT.2015.05.087 CrossRefGoogle Scholar
  36. 36.
    S. Chowdhury, G.K. Parshetti, R. Balasubramanian, Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chem. Eng. J. 263, 374–384 (2015).  https://doi.org/10.1016/J.CEJ.2014.11.037 CrossRefGoogle Scholar
  37. 37.
    D.S. Kim, S.Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A Gen. 323, 110–118 (2007).  https://doi.org/10.1016/j.apcata.2007.02.010 CrossRefGoogle Scholar
  38. 38.
    S. Meti, M.R. Rahman, M.I. Ahmad, K.U. Bhat, Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties. Appl. Surf. Sci. 451, 67–75 (2018).  https://doi.org/10.1016/J.APSUSC.2018.04.138 CrossRefGoogle Scholar
  39. 39.
    V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58, 883–891 (2007).  https://doi.org/10.1016/j.matchar.2006.09.002 CrossRefGoogle Scholar
  40. 40.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999).  https://doi.org/10.1107/S0021889898009856 CrossRefGoogle Scholar
  41. 41.
    L. Xiang, X. Zhao, J. Yin, B. Fan, Well-organized 3D urchin-like hierarchical TiO2 microspheres with high photocatalytic activity. J. Mater. Sci. 47, 1436–1445 (2012).  https://doi.org/10.1007/s10853-011-5924-7 CrossRefGoogle Scholar
  42. 42.
    H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G. Qing, M. Lu, Solvothermal synthesis and photoreactivity of anatase TiO nanosheets with dominant {001} facets. J. Am. Chem. Soc. 131 (2009) 4078–4083.  https://doi.org/10.1021/ja808790p CrossRefGoogle Scholar
  43. 43.
    Q. Chen, Q. Liu, J. Hubert, W. Huang, K. Baert, G. Wallaert, H. Terryn, M.-P. Delplancke-Ogletree, F. Reniers, Deposition of photocatalytic anatase titanium dioxide films by atmospheric dielectric barrier discharge. Surf. Coatings Technol. 310, 173–179 (2017).  https://doi.org/10.1016/J.SURFCOAT.2016.12.077 CrossRefGoogle Scholar
  44. 44.
    V. Swamy, D. Menzies, B.C. Muddle, A. Kuznetsov, L.S. Dubrovinsky, Q. Dai, V. Dmitriev, Nonlinear size dependence of anatase TiO2 lattice parameters. Appl. Phys. Lett. 88, 243103 (2006).  https://doi.org/10.1063/1.2213956 CrossRefGoogle Scholar
  45. 45.
    V.V. Atuchin, V.G. Kesler, G. Meng, Z.S. Lin, The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals. J. Phys. Condens. Matter 24, 405503 (2012).  https://doi.org/10.1088/0953-8984/24/40/405503 CrossRefGoogle Scholar
  46. 46.
    V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, Z. Zhang, Ti 2p and O 1 s core levels and chemical bonding in titanium-bearing oxides. J. Electron Spectros. Relat. Phenomena. 152, 18–24 (2006).  https://doi.org/10.1016/J.ELSPEC.2006.02.004 CrossRefGoogle Scholar
  47. 47.
    V.V. Atuchin, T.A. Gavrilova, J.-C. Grivel, V.G. Kesler, Electronic structure of layered titanate Nd2Ti2O7. Surf. Sci. 602, 3095–3099 (2008).  https://doi.org/10.1016/J.SUSC.2008.07.040 CrossRefGoogle Scholar
  48. 48.
    C.V. Ramana, V.V. Atuchin, U. Becker, R.C. Ewing, L.I. Isaenko, O.Y. Khyzhun, A.A. Merkulov, L.D. Pokrovsky, A.K. Sinelnichenko, S.A. Zhurkov (2007) Low-energy Ar + ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces.  https://doi.org/10.1021/JP0671392
  49. 49.
    A. Maliakal, H. Katz, P.M. Cotts, S. Subramoney, P. Mirau, Inorganic oxide core, polymer shell nanocomposites as a high gate dielectric for flexible electronics application. J. Am. Chem. Soc. 127, 14655–14662 (2005)CrossRefGoogle Scholar
  50. 50.
    I. Wypych, M. Bobowska, A. Tracz, S. Opasinska, A. Kadlubowski, J. Krzywania-kaliszewska, P. Grobelny, Wojciechowski, Dielectric properties and characterisation of titanium dioxide obtained by dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods, J.Nano.Mat. (2014) 1–9.  https://doi.org/10.1155/2014/124814
  51. 51.
    N.N. Rabin, S. Ida, M.R. Karim, M.S. Islam, R. Ohtani, M. Nakamura, M. Koinuma, L.F. Lindoy, S. Hayami, Super dielectric materials of two-dimensional TiO2 or Ca2 Nb3 O10 nanosheet hybrids with reduced graphene oxide. ACS Omega 3, 2074–2083 (2018).  https://doi.org/10.1021/acsomega.7b01764 CrossRefGoogle Scholar
  52. 52.
    D. Singh, P. Yadav, N. Singh, C. Kant, M. Kumar, S.D. Sharma, K.K. Saini, Dielectric properties of Fe-doped TiO2 nanoparticles synthesised by sol–gel route. J. Exp. Nanosci. 8, 171–183 (2013).  https://doi.org/10.1080/17458080.2011.564215 CrossRefGoogle Scholar
  53. 53.
    S. Sagadevan, Synthesis and electrical properties of TiO2 nanoparticles using a wet chemical technique. Am. J. Nanosci. Nanotechnol. 1, 27–30 (2013).  https://doi.org/10.11648/j.nano.20130101.16 CrossRefGoogle Scholar
  54. 54.
    A. Tripathy, P. Sharma, N. Sahoo, Synthesis, morphological, electromechanical characterization of (CaMgFe < inf> x</inf>)Fe < inf> 1-x</inf> Ti < inf> 3</inf> O < inf> 12-δ</inf>/PDMS nanocomposite thin films for energy storage application. IOP Conf. Ser. Mater. Sci. Eng. 323, 1–6 (2018).  https://doi.org/10.1088/1757-899X/323/1/012018.CrossRefGoogle Scholar
  55. 55.
    T. Paraffin, C. Shell, B. Balasubramanian, K.L. Kraemer, N.A. Reding, R. Skomski, S. Ducharme, D.J. Sellmyer, Synthesis of monodisperse properties. ACS Nano 4, 1893–1900 (2010).  https://doi.org/10.1021/nn9016422 CrossRefGoogle Scholar
  56. 56.
    V.V. Brus, A.K.K. Kyaw, P.D. Maryanchuk, J. Zhang, Quantifying interface states and bulk defects in high-efficiency solution-processed small-molecule solar cells by impedance and capacitance characteristics. Prog. Photovolt. Res. Appl. 23, 1526–1535 (2015).  https://doi.org/10.1002/pip.2586 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sunil Meti
    • 1
  • Sagar Prutvi Hosangadi
    • 2
  • M. R. Rahman
    • 1
  • Udaya K. Bhat
    • 1
    Email author
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkalIndia
  2. 2.Department of Metallurgical Engineering and Material ScienceIndian Institute of Technology BombayPowaiIndia

Personalised recommendations