Advertisement

Applied Physics A

, 125:184 | Cite as

Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons

  • Adnane NoualEmail author
  • Madiha Amrani
  • El Houssaine El Boudouti
  • Yan Pennec
  • Bahram Djafari-Rouhani
Article
  • 96 Downloads

Abstract

We investigate theoretically and numerically the possibility of realizing plasmon-induced transparency (PIT) and plasmon-induced absorption (PIA) in a novel compact graphene-based nanostructure. The main graphene bus waveguide is coupled to two graphene nanoribbons (GNRs). The PIT effect is obtained by setting the two GNRs in an inverted L-shape aside of the main waveguide, giving rise to lambda-like configuration in analogy with three atomic-level systems. The possibility of improving the quality factors of PIT-like resonances is shown and the associated slow light effects are showcased. The mechanism behind the observed transparency windows is related to mode splitting also known as Autler–Townes splitting phenomenon. Two PIA resonances are also demonstrated by the same system. This is achieved by inserting the two GNRs, forming an inverted T-shape, inside the main waveguide. Here the two GNRs are also set in a lambda-like configuration. We indicate the possibility of improving the Q-factor of the PIA resonances and showcase their fast light features. The PIA absorption bands are shown to be essentially caused by interference phenomena between three states as in electromagnetic-induced transparency. The proposed system may help the design of tunable integrated optical devices such as sensors, filters or high speed switches.

Notes

References

  1. 1.
    X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han et al., Electromagnetically induced absorption in a three-resonator metasurface system. Sci. Rep. 5, 10737 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    K. Okamoto, D. Tanaka, R. Degawa, X. Li, P. Wang, S. Ryuzaki et al., Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets. Sci. Rep. 6, 36165 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    C. Zhao, S. Xiaokang, J. Rongzhen, D. Gaoyan, W. Lulu, L. Yu et al., Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting. IEEE Photonics J. 7, 4801408 (2015)Google Scholar
  6. 6.
    H. Lu, X. Liu, D. Mao, Plasmonic analog of electromagnetically induced transparency in multinanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J. Guo, Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities. Appl. Opt. 53, 1604 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    H.J. Li, L.L. Wang, B.H. Zhang, X. Zhai, Tunable edge-mode-based mid-infrared plasmonically induced transparency in the coupling system of coplanar graphene ribbons. Appl. Phys. Express 9, 012001 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    J. Wang, X. Liang, S. Liu, Tunable multimode plasmon-induced transparency with graphene side-coupled resonators. J. Appl. Phys. 55, 022201 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Cao et al., Sensing analysis based on plasmon induced transparency in nanocavity coupled waveguide. Opt. Express 23, 20313 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Wang et al., A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt. Express 21, 25159 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S.A. Mikhailov, K. Ziegler, New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    W. Gao, J. Shu, C. Qiu, Q. Xu, Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano. 6, 7806 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Geim, K.S. Novoselov, The rise of graphene. Nat. Matter. 6, 183 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Su, X. Chen, J. Yin, X. Zhao, Graphene-based terahertz metasurface with tunable spectrum splitting. Opt. Lett. 41, 3799 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L. Luo, K. Wang, K. Guo, F. Shen, X. Zhang, Z. Yin, Z. Guo, Tunable manipulation of terahertz wavefront based on graphene metasurfaces. J. Opt. 19, 115104 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Fang, Z. Liu, Y. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Nikitin, F. Guinea, F.J. Garcia-Vidal, L. Martin-Moreno, Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 84, 161407 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    X. Zhu, W. Yan, N.A. Mortensen, S. Xiao, Bends and splitters in graphene nanoribbon waveguides. Opt. Express 21, 3486 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    F. Xing, Z.B. Liu et al., Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci. Rep. 2, 908 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Pan, Z. Liang et al., Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons. Sci. Rep. 6, 29984 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    S.X. Xia, X. Zhai et al., Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. Lett. 42, 3052 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    L. Wang et al., Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide. Opt. Lett. 40, 2325 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S.X. Xia, X. Zhai et al., Plasmonically induced transparency in double-layered graphene nanoribbons. Photon. Res. 6, 692 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Lezama et al., Electromagnetically induced absorption. Phys. Rev. A 59, 4732 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    J. He et al., Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 23, 6083 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    X. Zhang et al., Electromagnetically induced absorption in a three-resonator metasurface system. Sci. Rep. 5, 10737 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    M. Wen et al., Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide. Europhys. Lett. 116, 44004 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    C. Liu et al., Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature. 409, 490 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    F. Xia et al., Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    B. Peng, ŞK. Özdemir et al., what is and what is not electromagnetic induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Giner, L. Veissier et al., Experimental investigation of the transition between Autler–Townes splitting and electromagnetically induced transparency models. Phys. Rev. A 87, 013823 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    J. Liu, H. Yang et al., Experimental distinction of Autler–Townes splitting from electromagnetically induced transparency using coupled mechanical oscillators system. Sci. Rep. 6, 19040 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    J. Chen et al., Optical nano-imaging of gate-tunable graphene plasmons. Nature. 487, 77 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Francescato et al., Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon. New J. Phys. 15, 063020 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    S.X. Xia et al., Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt. Express 24, 17886 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Q. Lin, X. Zhai et al., Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings. EPL. 111, 34004 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    H. Lu, X. Liu et al., Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    M.L. Ladron de Guevara, F. Claro et al., Ghost Fano resonance in a double quantum dot molecule attached to leads. Phys. Rev. B 67, 195335 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    C. Hu, L. Wang et al., Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure. Appl. Phys. Express 9, 052001 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    T. Zhang, J. Zhou, Plasmon induced absorption in a graphene-based nanoribbon waveguide system and its applications in logic gate and sensor. J. Phys. D: Appl. Phys. 51, 055103 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    E.H. El Boudouti et al, Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures. J. Appl. Phys. 95. 1102 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    W. Boyd, Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Physique, Faculté des SciencesLPMR, Université Mohamed PremierOujdaMorocco
  2. 2.Faculté Polydisciplinaire NadorUniversité Mohamed PremierOujdaMorocco
  3. 3.Département de Physique, Institut d’Electronique, de Microélectronique et de NanotechnologieUMR CNRS 8520, Université de LilleVilleneuve d’AscqFrance

Personalised recommendations