Advertisement

Applied Physics A

, 125:178 | Cite as

Preparation, structure and luminescent performance of Na2SiF6:Re3+ (Re3+ = Eu3+, Tb3+, Ce3+) powders

  • Jin-Yu Zhao
  • Xi-Gui WangEmail author
Article
  • 5 Downloads

Abstract

A series of Na2SiF6:xRe3+ (Re3+ = Eu3+, Tb3+, Ce3+) phosphors were prepared by co-precipitation method. The structure and luminescence performance of the materials were characterized by XRD, TG–DSC, TEM, HRTEM, EDS, FT-IR, fluorescence spectra and the calculated CIE coordinates. The results show that under the excitation of specific UV light, Na2SiF6:xEu3+, Na2SiF6:yTb3+ and Na2SiF6:zCe3+ single-doping materials exhibit the characteristic emission of Eu3+ (5D0 → 7F2, red), Tb3+ (5D4 → 7F5, green) and Ce3+ (5d → 4f, blue), respectively. In the Na2SiF6:xEu3+yTb3+zCe3+ three-doping system, Na2SiF6:0.03Eu3+–0.07Tb3+–0.07Ce3+ material is representative. With the increase of exciting wavelength of UV light, the emission color of the material realizes tunable from white light to cool white light, warm white light and red orange light. And the luminescence of the material is closest to the ideal white light under excitation of UV light at 290 nm. So this phosphor can be promised as a single-component tunable white phosphor for application in white LEDs.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 21261010), the Natural Science Fund of Inner Mongolia Autonomous Region (no. 2015MS0227), the Second-Level Candidate (Disciplinary Leader) Research Fund (no. RCPY-2-2012-K-046) of the “Ten, Hundred, Thousand” Talents Project of Inner Mongolia Normal University.

Supplementary material

339_2019_2468_MOESM1_ESM.docx (568 kb)
Supplementary material 1 (DOCX 568 KB)

References

  1. 1.
    D.Q. Chen, W.D. Xiang, X.J. Liang, J.S. Zhong, H. Yu, M.Y. Ding, H.W. Lu, Z.G. Ji, J. Eur. Ceram. Soc. 35(3), 859–869 (2015)CrossRefGoogle Scholar
  2. 2.
    H.C. Cheng, J.Y. Lin, W.H. Chen, Appl. Therm. Eng. 38(1), 105–116 (2012)CrossRefGoogle Scholar
  3. 3.
    C.C. Lin, R.S. Liu, J. Phys. Chem. Lett. 2(11), 1268 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Nat. Photon. 3(4), 180–182 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    X.H. He, J. Zhou, N. Lian, M.Y. Guan, Silicon Bull. 28(4), 741–750 (2009)Google Scholar
  6. 6.
    D.R. Cooper, J.A. Capobianco, J. Seuntjens, Nanoscale 10(16), 7821–7831 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Cheng, J. Zhang, H.C. Zhang, S. Maryam, X.T. Bian, Z.H. Shen, X.W. Ni, J. Lu, Chin. Opt. Lett. 15(12), 121602 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    L.J. Ren, X.H. L, X.Q. Du, L. Jin, W.M. Chen, Y.A. Feng, J. Lumin. 142(8), 150–154 (2013)CrossRefGoogle Scholar
  9. 9.
    C.F. Zhu, Y.X. Yang, X.L. Liang, S.L. Yuan, G.R. Chen, J. Lumin. 126(2), 707–710 (2007)CrossRefGoogle Scholar
  10. 10.
    D. Ghosh, K. Biswas, S. Balaji, K. Annapurna, J. Alloy. Compd. 747, 242–249 (2018)CrossRefGoogle Scholar
  11. 11.
    T.C. Lang, T. Han, L.L. Peng, M.J. Tu, Mater. Chem. Front. 1, 928–932 (2017)CrossRefGoogle Scholar
  12. 12.
    H.D. Nguyen, C. Lin, M.H. Fang, R.S. Liu, J. Mater. Chem. C 2(48), 10268–10272 (2014)CrossRefGoogle Scholar
  13. 13.
    P.G. Sennikov, S.K. Ignatov, A.E. Sadov, A.G. Razuvaev, O. Schrems, Russ. J. Inorg. Chem. 54(2), 252–259 (2009)CrossRefGoogle Scholar
  14. 14.
    J.J. Cao, B. Li, P.Y. Jia, Funct. Mater. 12, 12097–12101 (2014)Google Scholar
  15. 15.
    K. Li, H. Lian, M. Shang, J. Lin, Dalton Trans. 44(47), 20542–20550 (2015)CrossRefGoogle Scholar
  16. 16.
    J.L. Zhang, G.Y. Hong, Chin. J. Lumin. 12(3), 224–229 (1991)Google Scholar
  17. 17.
    D.Z. Xu, J. Feng, X.Y. Yang, E.D. Zu, X.Y. Cui, J.C. Lin, W. Dong, Spectrosc. Spectr. Anal. 37(06), 1804–1808 (2017)Google Scholar
  18. 18.
    W.Y. Zhang, Q. Jing, Y. Fang, Z.H. Chen, Z. Für. Anorg. Und Allg. Chem. 643(22), 1739–1743 (2017)CrossRefGoogle Scholar
  19. 19.
    D.J. Wei, A.J. Tang, P. Shen, B. Liao, Guizhou Chem. Ind. 36(05), 32–34 (2011)Google Scholar
  20. 20.
    R. Hoshino, S. Adachi, J. Appl. Phys. 114, 213502 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J.Q. Ning, C.C. Zheng, L.X. Zheng, S.J. Xu, J. Appl. Phys. 118, 073101 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    J.Q. Ning, S.J. Xu, D.P. Yu, Y.Y. Shan, S.T. Lee, Appl. Phys. Lett. 91, 103117 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    X. Qiao, H.J. Seo, Mater. Res. Bull. 49(1), 76–82 (2014)CrossRefGoogle Scholar
  24. 24.
    P.C. Korir, F.B. Dejene, Appl. Phys. A 124(5), 356 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    C.S. Shi, S.Q. Man, J.Y. Sun, J. Rare Earths 1, 35–38 (1991)Google Scholar
  26. 26.
    D.K. Singh, J. Manam, Appl. Phys. A 124(3), 261 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    X.F. Wang, C. Zhang, C.Y. Deng, Chin. J. Lumin. 37(9), 1037–1042 (2016)CrossRefGoogle Scholar
  28. 28.
    X.G. Wang, Z.Y. Yu, M. Namira, S.L. Bo, Chin. J. Inorg. Chem. 24(4), 571–575 (2008)Google Scholar
  29. 29.
    Z.P. Yang, Z. Guo, S.C. Zhu, W.J. Wang, Spectrosc. Spectr. Anal. 24(12), 1506–1510 (2004)Google Scholar
  30. 30.
    W.N. Zhao, Z.M. Xu, T.Y. Sun, X.H. Wu, S.S. Liu, Z.C. Ma, Solid State Commun. 178(1), 42–45 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    C.H. Zhang, H.B. Liang, S. Zhang, C.M. Liu, D.J. Hou, L. Zhou, G.B. Zhang, J.Y. Shi, J. Phys. Chem. A 116(30), 15932–15937 (2012)Google Scholar
  32. 32.
    X.G. Wang, Spectrosc. Spectr. Anal. 28(2), 260–264 (2008)Google Scholar
  33. 33.
    S.L. Ji, L.L. Yin, G.D. Liu, L.D. Zhang, C.H. Ye, J. Phys. Chem. C 113(37), 16439–16444 (2009)CrossRefGoogle Scholar
  34. 34.
    X.Y. Huang, B. Li, H. Guo, J. Alloy. Compd. 695, 2773–2780 (2017)CrossRefGoogle Scholar
  35. 35.
    X.G. Zhang, L.Y. Zhou, Q. Pang, J.X. Shi, M.L. Gong, J. Phys. Chem. C 118(14), 7591–7598 (2014)CrossRefGoogle Scholar
  36. 36.
    K.L. Qiu, H.Z. Lian, Y.Q. Han, M.M. Shang, R.V. Deun, J. Lin, Dyes Pigments 139, 701–707 (2016)Google Scholar
  37. 37.
    Y.P. Tong, T. Chen, Spectrosc. Spectr. Anal. 33(11), 2930–2934 (2013)Google Scholar
  38. 38.
    B.L. Wang, L.Z. Sun, H.D. Ju, Solid State Commun. 150(31), 1460–1462 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    F.P. Zhuo, W. Zhang, J.M. Huo, Y.L. Zhao, W. Wu, X. Ding, Y.R. Shi, Y.H. Wang, J. Lumin. 33(3), 238–242 (2012)CrossRefGoogle Scholar
  40. 40.
    B.H. Li, J. Yang, J. Wang, M.M. Wu, Opt. Mater. 36(10), 1649–1654 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    U. Balderas, S. Carmona, L. Mariscal, I. Martínez, C. Falcony, Chem. Phys. 511, 1–6 (2018)CrossRefGoogle Scholar
  42. 42.
    J. Li, Z.Y. Mao, D.J. Wang, Y.C. Zhu, L. Gan, F.F. Xu, Ceram. Int. 39(8), 9809–9813 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Wu, J.L. Zhang, W.L. Zhou, C.Y. Rong, L.P. Yu, C.Z. Li, S.X. Lian, Chem. J. Chin. Univ. 34(2), 306–312 (2013)Google Scholar
  44. 44.
    S.Y. Kim, K. Woo, K. Lim, K. Lee, H.S. Jang, Nanoscale 5(19), 9255–9263 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    D. Jia, W. Jia, X.J. Wang, W.M. Yen, Solid State Commun. 129(1), 1–4 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    B. Li, X.Y. Huang, Ceram. Int. 44, 2915–4923 (2017)Google Scholar
  47. 47.
    M. Shang, G. Li, X. Kang, D. Yang, D. Geng, L. Jun, ACS Appl. Mater. Interfaces 3(7), 2738–2746 (2011)CrossRefGoogle Scholar
  48. 48.
    L. Jin, X.Q. Du, X.H. Lei, L.J. Ren, Y.A. Feng, W.M. Chen, Appl. Phys. A 114(2), 631–636 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    S.L. Zhao, F.X. Xin, S.Q. Xu, D. Deng, L.H. Huang, H.P. Wang, Y.J. Hua, J. Non Cryst. Solids 357(11), 2424–2427 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Environment ScienceInner Mongolia Normal UniversityHohhotChina

Personalised recommendations