Applied Physics A

, 125:158 | Cite as

Epitaxial Co doped BaSnO3 thin films with tunable optical bandgap on MgO substrate

  • Dong-Sheng Gao
  • Xiang-Dong GaoEmail author
  • Yong-Qing Wu
  • Tong-Tong Zhang
  • Jing-Nan Yang
  • Xiao-Min Li


Co doped BaSnO3 films [BaSn1 − xCoxO3(0 ≤ x ≤ 0.50), i.e., BSCO] have been grown on MgO single-crystal substrates via pulsed laser deposition. Effects of the Co-doping level on the crystallinity, the microstructure, and optical properties of the BSCO films are investigated. All the BSCO films are of high crystallinity and grown epitaxially on MgO substrates. The lattice parameter of the (200) plane drops linearly with the increase of the ‘x’ value. The Co doping is found to increase the film roughness and the grain size, and a RMS roughness of 8.33 nm and grain size up to 100 nm are observed in the film with x = 0.50. The low Co-doping level (x = 0.05, 0.1) has slight anti-reflection effects on the incident visible light, and the Co-doping level higher than 0.2 reduces the optical transmittance significantly. The optical bandgap shows a first-rising then falling trend with the increase of the Co content, and the lowest bandgap of 1.94 eV is realized in the BSCO film with x = 0.50.



Thank to the financial support from National Key R&D Program of China (2016YFA0201103), National Natural Science Foundation of China (51572281), and Basic Research Foundation of Shanghai, China (15JC1403600).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C.N.R. Rao, in Encyclopedia of Physical Science and Technology, 3rd edn., ed. by R.A. By, Meyers (Academic, California, 2013), pp. 707–714Google Scholar
  2. 2.
    S.I. Beigi, F.J. Walker, S.W. Cheong, K.M. Rabe, C.H. Ahn, Alkaline earth stannates: the next silicon. APL Mater. 3, 062510 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Bucur, A.I. Becur, S. Novaconi, I. Nicoara, BaSnO3 based thermally stable capacitors. J. Alloy. Compd. 542, 142–146 (2012)CrossRefGoogle Scholar
  4. 4.
    W.F. Zhang, J.W. Tang, J.H. Ye, Structural, photocatalytic, and photophysical properties of perovskite MSnO3(M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859–1871 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M.K. Mahapatra, P. Singh, D. Kumar, O. Parkash, Synthesis, crystal structure, microstructure and electrical behaviour of systems Sr1 – xLaxSnO3 and SrSn1 – xNixO3 (x ≤ 0.10). Adv. Appl. Ceram. 105, 280–284 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Li, X. Zhang, B. Guo, M.D. Wei, Enhanced efficiency dye-sensitized SrSnO3 solar cells prepared using chemical bath deposition. Electrochim. Acta 70, 313–317 (2012)CrossRefGoogle Scholar
  7. 7.
    X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T.A. Tyson, K. Char, K.S.W. Cheong, High carrier mobility in transparent Ba1 – xLaxSnO3 crystals with a wide band gap. Appl. Phys. Lett. 100, 172112 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, Structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3 from first principles calculations. J. Appl. Phys. 112, 043703 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, ZnO nanowire growth and devices. Mat. Sci. Eng. R 47, 1–47 (2004)CrossRefGoogle Scholar
  10. 10.
    N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Ch. 44, 86–105 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Endo, T. Matsuda, H. Takizana, Eu2+ luminescence in Srn+1Sn n O3n + 1 with layered perovskite structure. J. Mater. Sci. Lett. 11, 1330–1332 (1992)CrossRefGoogle Scholar
  12. 12.
    N. Zhang, Z.C. Zhang, J.Z. Zhou, Synthesis of CaSnO3 nanofibers by electrospinning combined with sol–gel. J. Sol-Gel. Sci. Technol. 58, 355–359 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Shimizu, Y. Fukuyama, T. Narikiyo, H. Arai, T. Seiyama, Perovskite-type oxides having semiconductivity as oxygen sensors. Chem. Lett. 14, 377–380 (1985)CrossRefGoogle Scholar
  14. 14.
    U. Lampe, J. Gerblinger, H. Meixner, Nitrogen oxide sensors based on thin films of BaSnO3. Sensor. Actuat. B-Chem. 26, 97–98 (1995)CrossRefGoogle Scholar
  15. 15.
    U. Lampe, J. Gerblinger, H. Meixner, Carbon-monoxide sensors based on thin films of BaSnO3. Sensor. Actuat. B-Chem. 25, 657–660 (1995)CrossRefGoogle Scholar
  16. 16.
    P. Singh, D. Kumar, O. Parkash, Dielectric behavior of the system BaSn1 – xNbxO3 BaSn1 – xNbxO3 (x⩽0.10). J. Appl. Phys. 97, 074103 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    U.S. Alaan, A.T.N. Diaye, P. Shafer, E. Arenholz, Y. Suzuki, Structure and magnetism of Fe-doped BaSnO3 thin films. AIP Adv. 7, 055716 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    K. Balamurugan, E.S. Kumar, B. Ramachandran, S. Venkatesh, N.H. Kumar, M.S.R. Rao, P.N. Santhosh, Dielectric resonance and magnetic properties of Fe-3% doped BaSnO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 111, 074107 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Q. Liu, F. Jin, G. Gao, B. Li, Y. Zhang, Q. Liu, Transparent and conductive Ta doped BaSnO3 films epitaxially grown on MgO substrate. J. Alloy. Compd. 684, 125–131 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Li, Q. Liu, Y. Zhang, Z. Liu, L. Geng, Highly conductive Nb doped BaSnO3 thin films on MgO substrates by pulsed laser deposition. J. Alloy. Compd. 680, 343–349 (2016)CrossRefGoogle Scholar
  21. 21.
    B. Li, Y. Zhang, Z. Liu, L. Geng, Structural, electrical, and optical properties of Ba1 – xSmxSnO3 epitaxial thin films on MgO substrates by pulsed laser deposition. J. Alloy. Compd. 708, 1117–1123 (2017)CrossRefGoogle Scholar
  22. 22.
    U.S. Alaan, P. Shafer, A.T.N. Diaye, E. Arenholz, Y. Suzuki, Gd-doped BaSnO3: A transparent conducting oxide with localized magnetic moments. Appl. Phys. Lett. 108, 042106 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Kumar, J. Singh, D.S. Rajput, A. Placke, A. Kumar, J. Kumar, Facile wet chemical synthesis of Er3+/Yb3+ co-doped BaSnO3 nano-crystallites for dye-sensitized solar cell application. Mat. Sci. Semicon. Proc. 83, 83–88 (2018)CrossRefGoogle Scholar
  24. 24.
    K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, Structural and optical properties of La-doped BaSnO3 thin films grown by PLD. J. Phys. Chem. Solids 76, 64–69 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    B.C. Luo, X.S. Cao, K.X. Jin, C.L. Chen, Determination of the effective mass and nanoscale electrical transport in La-doped BaSnO3 thin films. Curr. Appl. Phys. 16, 20–23 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    S.M. Xing, C. Shan, K. Jiang, J.J. Zhu, Y.W. Li, Z.G. Hu, J.H. Chu, Optoelectronic properties and interband transition of La-doped BaSnO3 transparent conducting films determined by variable temperature spectral transmittance. J. Appl. Phys. 117, 103107 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    J. Shin, Y.M. Kim, Y. Kim, C. Park, K. Char, High mobility BaSnO3 films and field effect transistors on non-perovskite MgO substrate. Appl. Phys. Lett. 109, 262102 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    U. Kim, C. Park, T. Ha, Y.M. Kim, N. Kim, C. Ju, J. Park, J. Yu, J.H. Kim, K. Char, All-perovskite transparent high mobility field effect using epitaxial BaSnO3 and LaInO3. APL Mater. 3, 036101 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    J. Zhang, S. Han, W. Luo, S. Xiang, J. Zou, F.E. Oropeza, M. Gu, K.H.L. Zhang, Interface energy band alignment at the all-transparent p–n heterojunction based on NiO and BaSnO3. Appl. Phys. Lett. 112, 171605 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    N. Rajamanickam, P. Soundarrajan, K. Jayakumar, K. Ramachandran, Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping. Sol. Energ. Mat. Sol. C. 166, 69–77 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Taya, P. Rani, M.K. Kashyap, Moss-Burstein shift in La-doped BaSnO3: A novel electron transport layer material for hybrid halide perovskite solar cells. AIP Conf. Proc. 1942, 140039 (2018)CrossRefGoogle Scholar
  32. 32.
    Q.Z. Liu, H. Li, B. Li, W. Wang, Q.C. Liu, Y.X. Zhang, J.M. Dai, Structure and band gap engineering of Fe-doped SrSnO3 epitaxial films. EPL-Europhys. Lett. 108, 37003 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    X.M. Hu, X.D. Gao, X.M. Li, Z.Y. Gu, Y. Shi, Y.Q. Wu, Microstructure and Band gap modulation of SrSn1 – xCoxO3 epitaxial thin films via pulsed laser deposition. Acta Phys. Chim. Sin. 32, 828–833 (2016)Google Scholar
  34. 34.
    X.M. Hu, X.D. Gao, D.S. Gao, X.M. Li, Room-temperature ferromagnetism and oxygen pressure-dependent optical, ferromagnetic properties in SrSn0.5Co0.5O3 thin films. Mater. Res. Lett. 6, 276–282 (2017)CrossRefGoogle Scholar
  35. 35.
    I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, Energy-band structure of the A(Sn1 – xMx)O3 (A = Ca, Sr, Ba; M = Mn, Fe, Co) perovskite-type phases: A search for new magnetic semimetals. Semiconductors 40, 1261–1265 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    P.H. Borse, U.A. Joshi, S.M. Ji, J.S. Jang, J.S. Lee, E.D. Jeong, H.G. Kim, Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis. Appl. Phys. Lett. 90, 034103 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    S.H. Lee, H.H. Wang, P. Gopal, J. Shin, H.M.I. Jaim, X.H. Zhang, S.Y. Jeong, D. Usanmaz, S. Curtarolo, M. Fornari, M.B. Nardelli, I. Takeuchi, I, Systematic band gap tuning of BaSnO3 via chemical substitutions: The role of clustering in mixed-valence perovskites. Chem. Mater. 29, 9378–9385 (2017)CrossRefGoogle Scholar
  38. 38.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)CrossRefGoogle Scholar
  39. 39.
    T.A. Germer, J.C. Zwinkels, B.K. Tsai, Chap. 2: theoretical concepts in spectrophotometric measurements. Exp. Methods Phys. Sci. 46, 11–66 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Tauc, R.G. Rovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidii B 16, 627–637 (1966)ADSCrossRefGoogle Scholar
  41. 41.
    S. Yan, S. Ge, Y. Zuo, W. Qiao, Effects of carbothermal annealing on structure defects, electrical and magnetic properties in Fe-doped In2O3. Scripta Mater. 61, 387–390 (2009)CrossRefGoogle Scholar
  42. 42.
    D.J. Singh, Q. Xu, K.P. Ong, Strain effects on the band gap and optical properties of perovskite SrSnO3 and BaSnO3.. Appl. Phys. Lett. 104, 011910 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of ScienceShanghaiPeople’s Republic of China
  2. 2.Suzhou Research Center, Shanghai Institute of CeramicsChinese Academy of ScienceTaicangPeople’s Republic of China
  3. 3.University of Chinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations