Advertisement

Applied Physics A

, 125:164 | Cite as

Dual-band dielectric light-harvesting nanoantennae made by nature

  • Julian Juhi-Lian TingEmail author
Article
  • 12 Downloads

Abstract

Mechanisms to use nanoparticles to separate sunlight into photovoltaic useful range and thermally useful range to increase the efficiency of solar cells and to dissipate heat radiatively are discussed based on lessons that we learnt from photosynthesis. We show that the dual-band maxima in the absorption spectrum of bacterial light harvestors not only are due to the bacteriochlorophylls involved but also come from the geometry of the light harvestor. Being able to manipulate these two bands arbitrarily enables us to fabricate the nanoparticles required. Such mechanisms are also useful for the design of remote power charging and light sensors.

Notes

References

  1. 1.
    N.E. Hjerrild, S. Mesgari, F. Crisostomo, J.A. Scott, R. Amal, R.A. Taylor, Sol. Energy Mater. Sol. Cells 147, 281 (2016).  https://doi.org/10.1016/j.solmat.2015.12.010 CrossRefGoogle Scholar
  2. 2.
    Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Science (80-.) 355(6329), 1062 (2017).  https://doi.org/10.1126/science.aai7899 ADSCrossRefGoogle Scholar
  3. 3.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32(3), 510 (1961).  https://doi.org/10.1063/1.1736034 ADSCrossRefGoogle Scholar
  4. 4.
    J.J. Wysocki, P. Rappaport, J. Appl. Phys. 31(3), 571 (1960).  https://doi.org/10.1063/1.1735630 ADSCrossRefGoogle Scholar
  5. 5.
    D. King, J. Kratochvil, W. Boyson, in Conf. Rec. Twenty Sixth IEEE Photovolt. Spec. Conf. - 1997 (IEEE, 1997), pp. 1183–1186.  https://doi.org/10.1109/PVSC.1997.654300
  6. 6.
    O. Dupré, R. Vaillon, M. Green, Sol. Energy Mater. Sol. Cells 140, 92 (2015).  https://doi.org/10.1016/j.solmat.2015.03.025 CrossRefGoogle Scholar
  7. 7.
    J. Oh, B. Rammohan, A. Pavgi, S. Tatapudi, G. Tamizhmani, G. Kelly, M. Bolen, IEEE J. Photovolt. 8(5), 1160 (2018).  https://doi.org/10.1109/JPHOTOV.2018.2841511 CrossRefGoogle Scholar
  8. 8.
    J.J.L. Ting, J. Photochem. Photobiol. B Biol. 179, 134 (2018).  https://doi.org/10.1016/j.jphotobiol.2018.01.011 CrossRefGoogle Scholar
  9. 9.
    P.K. Jain, Phys. Today 71(8), 10 (2018).  https://doi.org/10.1063/PT.3.3984 CrossRefGoogle Scholar
  10. 10.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).  https://doi.org/10.1017/CBO9780511813535 CrossRefGoogle Scholar
  11. 11.
    D.K. Kotter, S.D. Novack, W.D. Slafer, P.J. Pinhero, J. Sol. Energy Eng. 132(1), 011014 (2010).  https://doi.org/10.1115/1.4000577 CrossRefGoogle Scholar
  12. 12.
    G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, N.W. Isaacs, Nature 374(6522), 517 (1995).  https://doi.org/10.1038/374517a0 ADSCrossRefGoogle Scholar
  13. 13.
    D. Elsheakh, in Microw. Syst. Appl., ed. by S.K. Goudos, chap. 08 (IntechOpen, Rijeka, 2017), pp. 155–205.  https://doi.org/10.5772/64918
  14. 14.
    M. Watanabe, A. Nakamura, A. Kunii, K. Kusano, M. Futagawa, J. Phys. Conf. Ser. 660(1), 0 (2015).  https://doi.org/10.1088/1742-6596/660/1/012110 CrossRefGoogle Scholar
  15. 15.
    N. Shinohara, Wireless Power Transfer via Radiowaves. ISTE (Wiley, Hoboken, NJ, USA, 2013).  https://doi.org/10.1002/9781118863008 CrossRefGoogle Scholar
  16. 16.
    J.L. Miller, Phys. Today 67(8), 12 (2014).  https://doi.org/10.1063/PT.3.2464 CrossRefGoogle Scholar
  17. 17.
    N. Keskin, H. Liu, in 2015 IEEE 65th Electron. Components Technol. Conf. (IEEE, Dc, 2015), pp. 1828–1833.  https://doi.org/10.1109/ECTC.2015.7159848
  18. 18.
    J.S. Tsai, J.S. Hu, S.L. Chen, X. Huang, Adv. Mech. Eng. 8(2), 1 (2016).  https://doi.org/10.1177/1687814016632693 CrossRefGoogle Scholar
  19. 19.
    J.J.L. Ting, (2017). arXiv:1702.06671
  20. 20.
    A. Alù, N. Engheta, Phys. Rev. Lett. 101(4), 043901 (2008).  https://doi.org/10.1103/PhysRevLett.101.043901 ADSCrossRefGoogle Scholar
  21. 21.
    H.M. Wu, N.R.S. Reddy, G.J. Small, J. Phys. Chem. B 101(4), 651 (1997).  https://doi.org/10.1021/jp962766k CrossRefGoogle Scholar
  22. 22.
    S. Georgakopoulou, R.N. Frese, E. Johnson, C. Koolhaas, R.J. Cogdell, R. van Grondelle, G. van der Zwan, Biophys. J. 82(4), 2184 (2002).  https://doi.org/10.1016/S0006-3495(02)75565-3 CrossRefGoogle Scholar
  23. 23.
    D. Pathak, S.K. Sharma, V.S. Kushwah, Prog. Electromagn. Res. M 62(November), 123 (2017).  https://doi.org/10.2528/PIERM17092701 CrossRefGoogle Scholar
  24. 24.
    M.Z. Papiz, S.M. Prince, T. Howard, R.J. Cogdell, N.W. Isaacs, J. Mol. Biol. 326(5), 1523 (2003).  https://doi.org/10.1016/S0022-2836(03)00024-X CrossRefGoogle Scholar
  25. 25.
    J. Koepke, X. Hu, C. Muenke, K. Schulten, H. Michel, Structure 4(5), 581 (1996).  https://doi.org/10.1016/S0969-2126(96)00063-9 CrossRefGoogle Scholar
  26. 26.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94(1), 017402 (2005).  https://doi.org/10.1103/PhysRevLett.94.017402 ADSCrossRefGoogle Scholar
  27. 27.
    J.N. Farahani, D.W. Pohl, H.J. Eisler, B. Hecht, Phys. Rev. Lett. 95(1), 17402 (2005).  https://doi.org/10.1103/PhysRevLett.95.017402 ADSCrossRefGoogle Scholar
  28. 28.
    P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1(3), 438 (2009).  https://doi.org/10.1364/AOP.1.000438 ADSCrossRefGoogle Scholar
  29. 29.
    F. Monticone, C. Argyropoulos, A. Alu, IEEE Antennas Propag. Mag. PP(99), 1 (2017).  https://doi.org/10.1109/MAP.2017.2752721 CrossRefGoogle Scholar
  30. 30.
    S. Yoon, C. Park, M. Kim, K. Kim, Y. Yang, in 2010 Asia-Pacific Microw. Conf., pp. 219–222 (2010)Google Scholar
  31. 31.
    J. Lee, J. Lee, K. Min, Y. Cheon, IEEE Antennas Wirel. Propag. Lett. 13, 935 (2014).  https://doi.org/10.1109/LAWP.2014.2323066 ADSCrossRefGoogle Scholar
  32. 32.
    Z. Li, X. Liu, N. Xu, J. Du, Phys. Rev. Lett. 114(14), 1 (2015).  https://doi.org/10.1103/PhysRevLett.114.140504 CrossRefGoogle Scholar
  33. 33.
    R.K. Mongia, P. Bhartia, Int. J. Microw. Millim. Wave Comput. Eng. 4(3), 230 (1994).  https://doi.org/10.1002/mmce.4570040304 CrossRefGoogle Scholar
  34. 34.
    A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science (80-.) 354(6314), aag2472 (2016).  https://doi.org/10.1126/science.aag2472 CrossRefGoogle Scholar
  35. 35.
    R.C.J. Hsu, A. Ayazi, B. Houshmand, B. Jalali, Nat. Photonics 1(9), 535 (2007).  https://doi.org/10.1038/nphoton.2007.145 ADSCrossRefGoogle Scholar
  36. 36.
    D. Sinha, G.A.J. Amaratunga, Phys. Rev. Lett. 114(14), 147701 (2015).  https://doi.org/10.1103/PhysRevLett.114.147701 ADSCrossRefGoogle Scholar
  37. 37.
    D. Guha, Y. Antar, IEEE Trans. Antennas Propag. 54(9), 2657 (2006).  https://doi.org/10.1109/TAP.2006.880766 ADSCrossRefGoogle Scholar
  38. 38.
    S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 3rd edn. (Wiley, New York, 1994)Google Scholar
  39. 39.
    C.S. DeYoung, S.A. Long, IEEE Antennas Wirel. Propag. Lett. 5(1), 426 (2006).  https://doi.org/10.1109/LAWP.2006.883952 ADSCrossRefGoogle Scholar
  40. 40.
    Y.X. Guo, Y.F. Ruan, X.Q. Shi, IEEE Trans. Antennas Propag. 53(10), 3394 (2005).  https://doi.org/10.1109/TAP.2005.856381 ADSCrossRefGoogle Scholar
  41. 41.
    C.J. Law, A.W. Roszak, J. Southall, A.T. Gardiner, N.W. Isaacs, R.J. Cogdell, Mol. Membr. Biol. 21(3), 183 (2004).  https://doi.org/10.1080/09687680410001697224 CrossRefGoogle Scholar
  42. 42.
    R.G. Alden, E. Johnson, V. Nagarajan, W.W. Parson, C.J. Law, R.G. Cogdell, J. Phys. Chem. B 101(23), 4667 (1997).  https://doi.org/10.1021/jp970005r CrossRefGoogle Scholar
  43. 43.
    L. Novotny, Phys. Rev. Lett. 98(26), 266802 (2007).  https://doi.org/10.1103/PhysRevLett.98.266802 ADSCrossRefGoogle Scholar
  44. 44.
    Y. Yu, V.E. Ferry, A.P. Alivisatos, L. Cao, Nano Lett. 12(7), 3674 (2012).  https://doi.org/10.1021/nl301435r ADSCrossRefGoogle Scholar
  45. 45.
    D. Soren, R. Ghatak, R.K. Mishra, D.R. Poddar, Prog. Electromagn. Res. B 60, 195 (2014).  https://doi.org/10.2528/PIERB14031306 CrossRefGoogle Scholar
  46. 46.
    A. Alù, N. Engheta, Phys. Rev. B 78(8), 085112 (2008).  https://doi.org/10.1103/PhysRevB.78.085112 ADSCrossRefGoogle Scholar
  47. 47.
    N.E. Hjerrild, R.A. Taylor, Phys. Today 70(12), 40 (2017).  https://doi.org/10.1063/PT.3.3790 ADSCrossRefGoogle Scholar
  48. 48.
    R.K. Chaudhary, K.V. Srivastava, A. Biswas, in 2011 Natl. Conf. Commun. (IEEE, 2011), pp. 1–5.  https://doi.org/10.1109/NCC.2011.5734715
  49. 49.
    D. Soren, R. Ghatak, R.K. Mishra, D.R. Poddar, J. Electromagn. Anal. Appl. 04(01), 9 (2012).  https://doi.org/10.4236/jemaa.2012.41002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.De-Font Research InstituteTaichungTaiwan ROC

Personalised recommendations