Applied Physics A

, 125:147 | Cite as

The band alignments modulation of g–MoTe2/WTe2 van der Waals heterostructures

  • Honglin LiEmail author
  • Yuting Cui
  • Tao Wang
  • Haijun Luo


Searching for novel two-dimensional (2D) materials based nanoscale electronic devices is a hot topic in the current research. A modulation of materials’ specific physical properties by altering external conditions has long been used. There are a variety of routes to improve the specific behavior of materials. In this paper, the structural, electronic, and the corresponding variational characteristics of the graphene(g)-MoTe2/WTe2 heterointerfaces are studied in detail based on ab initio calculations with nonlocal van der Waals (vdW) corrections. We performed research on the band alignments of g–MoTe2/WTe2 contacts and a concise routine to reduce the Schottky barrier and obtain Ohmic contact. The results predict a barrier height of 62 meV and 280 meV for g–MoTe2/WTe2, respectively, in a neutral state. In the applied electric field, the corresponding Schottky barriers can be effectively tuned by various electric fields. The height of the barrier further decreases to 0 under − 0.02/0.16 V/Å and − 0.06/0.08 V/Å for g–MoTe2/WTe2, respectively, and the numerical value of the barrier and the corresponding Schottky type can be regulated in a flexible way. Additionally, theoretical calculation results also demonstrate that g–MoTe2 has a smaller Fermi level pinning effect than g–WTe2, which plays a significant role in the fabrication of novel transistors based 2D materials and it should be a better choice for FETs application.



The authors acknowledge financial support by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800501, KJQN201800528), the Program for Leading Talents in Science and Technology Innovation of Chongqing City (No. cstc2014kjcxljrc0023) and Chongqing Normal University Fund Project (Grant No. 17XLB012).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    C. Zhang, C. Gong, Y. Nie, K.-A. Min, C. Liang, Y.J. Oh, H. Zhang, W. Wang, S. Hong, L. Colombo, 2D Mater. 4, 015026 (2016)CrossRefGoogle Scholar
  3. 3.
    B. Radisavljevic, A. Radenovic, J. Brivio, iV. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, Science 340, 1311 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    H. Li, K. Yu, Z. Tang, H. Fu, Z. Zhu, Phys. Chem. Chem. Phys. 18, 14074 (2016)CrossRefGoogle Scholar
  6. 6.
    S.-K. Lee, H.Y. Jang, S. Jang, E. Choi, B.H. Hong, J. Lee, S. Park, J.-H. Ahn, Nano Lett. 12, 3472 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    K.C. Yung, W.M. Wu, M.P. Pierpoint, F.V. Kusmartsev, Contemp. Phys. 54, 233 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    N. Petrone, T. Chari, I. Meric, L. Wang, K.L. Shepard, J. Hone, ACS Nano. 9, 8953 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M.-H. Chuang, Y.-H. Lee, D. Antoniadis, Nano Lett. 16, 6349 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 12, 3788 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Nat. Commun. 3, ncomms2018 (2012)Google Scholar
  13. 13.
    J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Phys. Rev. X. 4, 031005 (2014)Google Scholar
  14. 14.
    K. Xu, Y. Xu, H. Zhang, B. Peng, H. Shao, G. Ni, J. Li, M. Yao, H. Lu, H. Zhu, Phys. Chem. Chem. Phys. 20, 30351 (2018)CrossRefGoogle Scholar
  15. 15.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  17. 17.
    L. Xu, W.-Q. Huang, L.-L. Wang, Z.-A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan, G.-F. Huang, Chem. Mater. 27, 1612 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Kresse, Phys. Rev. B 54, 169 (1996)CrossRefGoogle Scholar
  19. 19.
    L. Huang, B. Li, M. Zhong, Z. Wei, J. Li, J. Phys. Chem. C 121, 9305 (2017)CrossRefGoogle Scholar
  20. 20.
    J.H. Rose, J. Ferrante, J.R. Smith, Phys. Rev. Lett. 47, 675 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    J. Klimeš, D.R. Bowler, A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Wang, Q. Chen, J. Wang, J. Phys. Chem. C 119, 4752 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Zacharia, H. Ulbricht, T. Hertel, Phys. Rev. B 69, 155406 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    W. Hu, Z. Li, J. Yang, J. Chem. Phys. 138, 054701 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y.H. Ng, Z. Zhu, R. Amal, J. Am. Chem. Soc. 134, 4393 (2012)CrossRefGoogle Scholar
  26. 26.
    W. Hu, Z. Li, J. Yang, J. Chem. Phys. 138, 124706 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D.W. Zhang, H. Zhu, Mater. Res. Lett. 5, 399 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Tsafack, B.I. Yakobson, Phys. Rev. B 93, 165434 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    B. Amin, T.P. Kaloni, U. Schwingenschlögl, Rsc Adv. 4, 34561 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, Y. Li, J. Wu, W. Duan, Nanoscale. 9, 2068 (2017)CrossRefGoogle Scholar
  32. 32.
    F. Wang, L. Yin, Z. Wang, K. Xu, F. Wang, T.A. Shifa, Y. Huang, Y. Wen, C. Jiang, J. He, Appl. Phys. Lett. 109, 193111 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    T. Eknapakul, P.D.C. King, M. Asakawa, P. Buaphet, R.H. He, S.K. Mo, H. Takagi, K.M. Shen, F. Baumberger, T. Sasagawa, Nano Lett. 14, 1312 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    W. Chen, E.J.G. Santos, W. Zhu, E. Kaxiras, Z. Zhang, Nano Lett. 13, 509 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    H. Hasegawa, T. Sawada, Thin Solid Films 103, 119 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, ACS Nano. 8, 2880 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Gong, L. Colombo, R.M. Wallace, K. Cho, Nano Lett. 14, 1714 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations