Advertisement

Applied Physics A

, 125:175 | Cite as

Microelectronic sensor for continuous glucose monitoring

  • Raphael Aparecido Sanches NascimentoEmail author
  • Marcelo Mulato
Article
  • 9 Downloads

Abstract

Continuous glucose monitoring is still a challenging task to be accomplished nowadays. Glucose biosensors are normally composed by disposable parts limiting the glucose measurement to one single time. A continuous glucose monitoring device could help diabetes patients and also the development of an artificial pancreas in near future. Thus, two different biosensors for continuous glucose monitoring based on microelectronics technology using an extended gate field-effect transistor device are presented in this work. Glucose oxidase was immobilized on top of fluorine tin oxide substrates by two distinct methods (by chitosan and by glutaraldehyde) and the enzymatic sensor will be shown to work for the continuous glucose monitoring for glucose concentrations corresponding to a healthy human body. Concentration ranges for normal or abnormal levels were both tested.

Notes

References

  1. 1.
  2. 2.
    F.M. Matschinsky, Diabetes 39(6), 647 (1990).  https://doi.org/10.2337/diab.39.6.647 CrossRefGoogle Scholar
  3. 3.
    S. Zhong, C.H. Jang, Biosens. Bioelectron. 59, 293 (2014).  https://doi.org/10.1016/j.bios.2014.03.070 CrossRefGoogle Scholar
  4. 4.
    A. Heller, B. Feldman, Chem. Rev. 108(7), 2482 (2008).  https://doi.org/10.1021/cr068069y CrossRefGoogle Scholar
  5. 5.
    J.V.D. Spiegel, I. Lauks, P. Chan, D. Babic, Sens. Actuators 4, 291 (1983).  https://doi.org/10.1016/0250-6874(83)85035-5 CrossRefGoogle Scholar
  6. 6.
    P.D. Batista, Meas. Sci. Technol. 25(2), 027001 (2013).  https://doi.org/10.1088/0957-0233/25/2/027001 CrossRefGoogle Scholar
  7. 7.
    P.D. Batista, M. Mulato, J. Mater. Sci. 45(20), 5478 (2010).  https://doi.org/10.1007/s10853-010-4603-4 ADSCrossRefGoogle Scholar
  8. 8.
    P.D. Batista, M. Mulato, C.F.D.O. Graeff, F.J.R. Fernandez, F.D.C. Marques, Braz. J. Phys. 36(2A), 478 (2006).  https://doi.org/10.1590/S0103-97332006000300066 ADSCrossRefGoogle Scholar
  9. 9.
    B.R. Huang, S.C. Hung, Y.P. Lo, Mater. Sci. Semicond. Process. 26, 710 (2014).  https://doi.org/10.1016/j.mssp.2014.06.033 CrossRefGoogle Scholar
  10. 10.
    W.L. Tsai, B.T. Huang, K.Y. Wang, Y.C. Huang, P.Y. Yang, H.C. Cheng, IEEE Trans. Nanotechnol. 13(4), 760 (2014).  https://doi.org/10.1109/TNANO.2014.2318710 ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Yang, J.C. Wang, T.W. Chiang, Y.T. Lin, T.W. Juan, T.C. Chen, M.Y. Shih, C.E. Lue, C.S. Lai, in 2013 IEEE 5th International Nanoelectronics Conference (INEC) (2013), pp. 480–482.  https://doi.org/10.1109/INEC.2013.6466083
  12. 12.
    C.E. Lue, I.S. Wang, C.H. Huang, Y.T. Shiao, H.C. Wang, C.M. Yang, S.H. Hsu, C.Y. Chang, W. Wang, C.S. Lai, Microelectron. Reliab. 52(8), 1651 (2012).  https://doi.org/10.1016/j.microrel.2011.10.026 CrossRefGoogle Scholar
  13. 13.
    J.L. Chiang, C.Y. Kuo, in 2013 IEEE 5th International Nanoelectronics Conference (INEC) (2013), pp. 498–501.  https://doi.org/10.1109/INEC.2013.6466089
  14. 14.
    S.P. Chang, C.W. Li, K.J. Chen, S.J. Chang, C.L. Hsu, T.J. Hsueh, H.T. Hsueh, Sci. Adv. Mater. 4(11), 1174 (2012).  https://doi.org/10.1166/sam.2012.1410 CrossRefGoogle Scholar
  15. 15.
    P.D. Batista, M. Mulato, Appl. Phys. Lett. 87(14), 143508 (2005).  https://doi.org/10.1063/1.2084319 ADSCrossRefGoogle Scholar
  16. 16.
    C. Karuppiah, S. Palanisamy, S.M. Chen, V. Veeramani, P. Periakaruppan, Sens. Actuators B Chem. 196, 450 (2014).  https://doi.org/10.1016/j.snb.2014.02.034 CrossRefGoogle Scholar
  17. 17.
    Y. Zhou, H. Dong, L. Liu, J. Liu, M. Xu, Biosens. Bioelectron. 60, 231 (2014).  https://doi.org/10.1016/j.bios.2014.04.012 CrossRefGoogle Scholar
  18. 18.
    C.P. Chen, A. Ganguly, C.Y. Lu, T.Y. Chen, C.C. Kuo, R.S. Chen, W.H. Tu, W.B. Fischer, K.H. Chen, L.C. Chen, Anal. Chem. 83(6), 1938 (2011).  https://doi.org/10.1021/ac102489y CrossRefGoogle Scholar
  19. 19.
    L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, K.P. Hsiung, S.K. Hsiung, Sens. Actuators B Chem. 76(1–3), 187 (2001).  https://doi.org/10.1016/S0925-4005(01)00629-3 CrossRefGoogle Scholar
  20. 20.
    C.T. Lee, Y.S. Chiu, S.C. Ho, Y.J. Lee, Sensors 11(5), 4648 (2011).  https://doi.org/10.3390/s110504648 CrossRefGoogle Scholar
  21. 21.
    X. Chen, X. Tian, L. Zhao, Z. Huang, M. Oyama, Microchim. Acta 181(7–8), 783 (2014).  https://doi.org/10.1007/s00604-013-1142-0 CrossRefGoogle Scholar
  22. 22.
    S. Park, T.D. Chung, H.C. Kim, Anal. Chem. 75(13), 3046 (2003).  https://doi.org/10.1021/ac0263465 CrossRefGoogle Scholar
  23. 23.
    A. Abbadi, H.V. Bekkum, J. Mol. Catal. A Chem. 97(2), 111 (1995).  https://doi.org/10.1016/1381-1169(94)00078-6 CrossRefGoogle Scholar
  24. 24.
    D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 6th edn. (W. H. Freeman, New York, 2012)Google Scholar
  25. 25.
    H. Wang, X. Wang, X. Zhang, X. Qin, Z. Zhao, Z. Miao, N. Huang, Q. Chen, Biosens. Bioelectron. 25(1), 142 (2009).  https://doi.org/10.1016/j.bios.2009.06.022 CrossRefGoogle Scholar
  26. 26.
    C.T. Lee, Y.S. Chiu, Sens. Actuators B Chem. 210, 756 (2015).  https://doi.org/10.1016/j.snb.2015.01.042 CrossRefGoogle Scholar
  27. 27.
    F.R. Shu, G.S. Wilson, Anal. Chem. 48(12), 1679 (1976).  https://doi.org/10.1021/ac50006a014 CrossRefGoogle Scholar
  28. 28.
    Y. Zou, C. Xiang, L.X. Sun, F. Xu, Biosens. Bioelectron. 23(7), 1010 (2008).  https://doi.org/10.1016/j.bios.2007.10.009 CrossRefGoogle Scholar
  29. 29.
    X. Chu, D. Duan, G. Shen, R. Yu, Talanta 71(5), 2040 (2007).  https://doi.org/10.1016/j.talanta.2006.09.013 CrossRefGoogle Scholar
  30. 30.
    G.K. Kouassi, J. Irudayaraj, G. McCarty, BioMagn. Res. Technol. 3, 1 (2005).  https://doi.org/10.1186/1477-044X-3-1 CrossRefGoogle Scholar
  31. 31.
    V.L. Sirisha, A. Jain, A. Jain, Adv. Food Nutr. Res. 79, 179 (2016).  https://doi.org/10.1016/bs.afnr.2016.07.004 CrossRefGoogle Scholar
  32. 32.
    S. Datta, L.R. Christena, Y.R.S. Rajaram, 3 Biotech 3(1), 1 (2013).  https://doi.org/10.1007/s13205-012-0071-7 CrossRefGoogle Scholar
  33. 33.
    R.A.S. Nascimento, M. Mulato, R.A.S. Nascimento, M. Mulato, Mater. Res. 20(5), 1369 (2017).  https://doi.org/10.1590/1980-5373-mr-2017-0502 CrossRefGoogle Scholar
  34. 34.
    D. Zaouk, R. al Asmar, J. Podlecki, Y. Zaatar, A. Khoury, A. Foucaran, Microelectron. J. 38(8), 884 (2007).  https://doi.org/10.1016/j.mejo.2007.07.072 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsFederal University of LavrasLavrasBrazil
  2. 2.Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São PauloRibeirão PrêtoBrazil

Personalised recommendations