Advertisement

Applied Physics A

, 125:167 | Cite as

Effect of Er3+ substitution on structural and magnetic properties of narrow size distributed ZnFe2−xErxO4 nanoparticles

  • M. Shoba
  • S. KaleemullaEmail author
  • C. Krishnamoorthi
  • G. Venugopal Rao
Article
  • 8 Downloads

Abstract

Rare-earth ion (Er3+) substituted ZnFe2−xErxO4 nanoparticles at different Er concentrations (x = 0, 0.2, 0.4, 0.6, and 0.8) were synthesized by surfactant (polyethylene glycol) assisted co-precipitation method and studied for structural and magnetic properties of the synthesized nanoparticles. All the ZnFe2−xErxO4 ferrite nanoparticles exhibited an average size of around 25 nm. It was observed that substituent Er3+ predominantly occupy octahedral sublattice in spinel structure. The crystal lattice unit cell volume and magnetic disorder increased with increase of Er3+ concentration. The magnetic parameters such as spin-glass or superparamagnetic blocking temperature (TB), maximum magnetization (Mmax), remnant magnetization (Mr) and coercive field (Hc) of the ZnFe2−xErxO4 ferrite nanoparticles decreased with decreasing temperature (3–300 K). High and low magnetizations were observed for the nanoparticles at 3 K and 300 K, respectively. The observed magnetic properties were explained clearly by considering the substitution of Er3+ ion in to the octahedral sub-lattice and diminishing the magnetic exchange interactions between Fe3+ ions with [Ar] 3d5 and Er3+ ions with [Xe] 4f11 5d10 electronic configurations. The present studies confirm that Er3+ substitution does not enhance magnetic properties of ZnFe2O4 nanoferrites.

Notes

Acknowledgements

The authors gratefully acknowledge and thank the centre for crystal growth and VIT management for providing research facilities.

References

  1. 1.
    A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, S. García-Granda, Mater. Chem. Phys. 174, 164 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Bullita, A. Casu, M.F. Casula, G. Concas, F. Congiu, A. Corrias, A. Falqui, D. Loche, C. Marras, Phys. Chem. Chem. Phys. 16, 4843 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Mayekar, V. Dhar, S. Radha, Synthesis 5, 5 (2016)Google Scholar
  4. 4.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloy. Compd. 652, 346 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Liu, M. Lv, Q. Wang, H. Li, P. Guo, X. Zhao, J. Magn. Magn. Mater. 424, 155 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M. Milanović, E.G. Moshopoulou, D. Stamopoulos, E. Devlin, K.P. Giannakopoulos, A.G. Kontos, K. Eleftheriadis, M.I. Gini, L.M. Nikolić, Ceram. Int. 39, 3235 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, S. Ponnusamy, J. Mater. Sci. Mater. Electron. 25, 2583 (2014)CrossRefGoogle Scholar
  8. 8.
    M.Z. Shoushtari, A. Emami, S.E.M. Ghahfarokhi, J. Magn. Magn. Mater. 419, 572 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, J. Mater. Chem. C 1, 2875 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Powder Technol. 333, 153 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, J. Magn. Magn. Mater. 439, 228 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    T. Shinde, A. Gadkari, P. Vasambekar, J. Magn. Magn. Mater. 322, 2777 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    C. Yao, Q. Zeng, G. Goya, T. Torres, J. Liu, H. Wu, M. Ge, Y. Zeng, Y. Wang, J. Jiang, J. Phys. Chem. C 111, 12274 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Manohar, C. Krishnamoorthi, J. Photochem. Photobiol. B 173, 456 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)CrossRefGoogle Scholar
  16. 16.
    V. Blanco-Gutiérrez, M.J. Torralvo-Fernández, R. Sáez-Puche, J. Phys. Chem. C 114, 1789 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, Q. Shi, J. Schliesser, B.F. Woodfield, Z. Nan, Inorg. Chem. 53, 10463 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Wu, G. Wu, L. Wang, Powder Technol. 269, 443 (2015)CrossRefGoogle Scholar
  19. 19.
    V. Blanco-Gutierrez, F. Jimenez-Villacorta, P. Bonville, M.J. Torralvo-Fernández, R. Saez-Puche, J. Phys. Chem. C 115, 1627 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, J. Colloid Interface Sci. 533, 481 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    C. Jesus, E. Mendonça, L. Silva, W. Folly, C. Meneses, J. Duque, J. Magn. Magn. Mater. 350, 47 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    B.D. Prasad, H. Nagabhushana, K. Thyagarajan, B. Nagabhushana, D. Jnaneshwara, S. Sharma, C. Shivakumara, N. Gopal, S.-C. Ke, R. Chakradhar, J. Magn. Magn. Mater. 358, 132 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    G. Thirupathi, R. Singh, IEEE Trans. Magn. 50, 1 (2014)CrossRefGoogle Scholar
  24. 24.
    V. Blanco-Gutiérrez, E. Urones-Garrote, M.a.J. Torralvo-Fernández, R. Sáez-Puche, Chem. Mater. 22, 6130 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Veena, A. Somashekarappa, G. Shankaramurthy, H. Jayanna, H. Somashekarappa, J. Magn. Magn. Mater. 419, 375 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R. Anavekar, K. Praveena, J. Magn. Magn. Mater. 424, 1 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    P. Thakur, R. Sharma, V. Sharma, P. Barman, M. Kumar, D. Barman, S. Katyal, P. Sharma, J. Magn. Magn. Mater. 432, 208 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    H. Yoon, J.S. Lee, J.H. Min, J. Wu, Y.K. Kim, Nanoscale Res. Lett. 8, 530 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    H.R. Ebrahimi, M. Parish, G.R. Amiri, B. Bahraminejad, S. Fatahian, J. Magn. Magn. Mater. 414, 55 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    N. Kumari, V. Kumar, S. Khasa, S. Singh, Ceram. Int. 41, 1907 (2015)CrossRefGoogle Scholar
  31. 31.
    N. Kumari, V. Kumar, S. Singh, J. Alloy. Compd. 622, 628 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Munir, F. Ahmed, M. Saqib, M. Anis-ur-Rehman. J. Magn. Magn. Mater. 397, 188 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, A. Başaran, J. Magn. Magn. Mater. 321, 157 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, J. Magn. Magn. Mater. 322, 866 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    C. Srinivas, B. Tirupanyam, A. Satish, V. Seshubai, D. Sastry, O. Caltun, J. Magn. Magn. Mater. 382, 15 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    P. Thakur, R. Sharma, M. Kumar, S. Katyal, N. Negi, N. Thakur, V. Sharma, P. Sharma, Mater. Res. Express 3, 075001 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Superlattices Microstruct. 64, 118 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    S. Masoudpanah, S.S. Ebrahimi, M. Derakhshani, S. Mirkazemi, J. Magn. Magn. Mater. 370, 122 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    N. Sharma, P. Aghamkar, S. Kumar, M. Bansal, R. Tondon, J. Magn. Magn. Mater. 369, 162 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    R. Tholkappiyan, K. Vishista, Phys. B 448, 177 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    L. Yang, Z. Wang, B. Zhai, Y. Shao, Z. Zhang, Y. Sun, J. Yang, Ceram. Int. 39, 8261 (2013)CrossRefGoogle Scholar
  42. 42.
    B. Zhao, Z. Nan, J. Mater. Chem. 22, 6581 (2012)CrossRefGoogle Scholar
  43. 43.
    I. Soibam, S. Phanjoubam, H. Sharma, H. Sarma, C. Prakash, Phys. B 404, 3839 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    R.R. Shahraki, M. Ebrahimi, S.S. Ebrahimi, S. Masoudpanah, J. Magn. Magn. Mater. 324, 3762 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    S.L. Darshane, R.G. Deshmukh, S.S. Suryavanshi, I.S. Mulla, J. Am. Ceram. Soc. 91, 2724 (2008)CrossRefGoogle Scholar
  46. 46.
    J. Wan, X. Jiang, H. Li, K. Chen, J. Mater. Chem. 22, 13500 (2012)CrossRefGoogle Scholar
  47. 47.
    L. Han, X. Zhou, L. Wan, Y. Deng, S. Zhan, J. Environ. Chem. Eng. 2, 123 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Drofenik, M. Kristl, D. Makovec, Z. Jagličić, D. Hanžel, Mater. Manuf. Processes 23, 603 (2008)CrossRefGoogle Scholar
  49. 49.
    M. Roy, H. Verma, J. Magn. Magn. Mater. 306, 98 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    F. Li, H. Wang, L. Wang, J. Wang, J. Magn. Magn. Mater. 309, 295 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    T.L. Cheng, M. Zheng, Z.S. Wang, Z.L. Chen, in Study on Synthesizing and Characterizing of Zinc Ferrite Nanoparticles, 2012 (Trans Tech Publ), p. 545Google Scholar
  52. 52.
    M. Maletin, Ž Cvejić, S. Rakić, L.M. Nikolić, V.V. Srdić, in Low Temperature Synthesis of Nanocrystalline ZnFe2O4 Powders, 2006 (Trans Tech Publ), p. 91Google Scholar
  53. 53.
    P.A. Kumar, J. Shrotri, S. Kulkarni, C. Deshpande, S. Date, Mater. Lett. 27, 293 (1996)CrossRefGoogle Scholar
  54. 54.
    Y. Köseoğlu, Ceram. Int. 39, 4221 (2013)CrossRefGoogle Scholar
  55. 55.
    Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, J. Nanopart. Res. 13, 2235 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    A. Yao, F. Ai, D. Wang, W. Huang, X. Zhang, Mater. Sci. Eng. C 29, 2525 (2009)CrossRefGoogle Scholar
  57. 57.
    M. Shoba, S. Kaleemulla, J. Phys. Chem. Solids 111, 447 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    B. Jeyadevan, C. Chinnasamy, K. Shinoda, K. Tohji, H. Oka, J. Appl. Phys. 93, 8450 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    K. Velmurugan, V.S.K. Venkatachalapathy, S. Sendhilnathan, Mater. Res. 13, 299 (2010)CrossRefGoogle Scholar
  60. 60.
    J. Philip, G. Gnanaprakash, G. Panneerselvam, M. Antony, T. Jayakumar, B. Raj, J. Appl. Phys. 102, 054305 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    C.S. Kumar, in Magnetic Nanomaterials, Vol. 4 (Wiley, Hoboken, 2009)Google Scholar
  62. 62.
    N. Najmoddin, A. Beitollahi, E. Devlin, H. Kavas, S.M. Mohseni, J. Åkerman, D. Niarchos, H. Rezaie, M. Muhammed, M.S. Toprak, Microporous Mesoporous Mater. 190, 346 (2014)CrossRefGoogle Scholar
  63. 63.
    P. Poddar, J. Gass, D. Rebar, S. Srinath, H. Srikanth, S. Morrison, E. Carpenter, Journal of magnetism and magnetic materials 307, 227 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    R. Singh, G. Thirupathi, in Magnetic Spinels-Synthesis, Properties and Applications (InTech, 2017)Google Scholar
  65. 65.
    R. Topkaya, A. Baykal, A. Demir, J. Nanoparticle Res. 15, 1359 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    R. Sai, S.D. Kulkarni, S.S. Bhat, N.G. Sundaram, N. Bhat, S. Shivashankar, RSC Adv. 5, 10267 (2015)CrossRefGoogle Scholar
  67. 67.
    C. Upadhyay, H. Verma, V. Sathe, A. Pimpale, J. Magn. Magn. Mater. 312, 271 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    H. Nathani, R. Misra, Mater. Sci. Eng. B 113, 228 (2004)CrossRefGoogle Scholar
  69. 69.
    M.M. Selvi, D. Chakraborty, C. Venkateswaran, J. Magn. Magn. Mater. 423, 39 (2017)ADSCrossRefGoogle Scholar
  70. 70.
    E. Mendonça, C. Jesus, W. Folly, C. Meneses, J. Duque, A. Coelho, J. Appl. Phys. 111, 053917 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    S. Thakur, S. Katyal, M. Singh, J. Magn. Magn. Mater. 321, 1 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    J. Xu, D. Xie, C. Teng, X. Zhang, C. Zhang, Y. Sun, T.-L. Ren, M. Zeng, X. Gao, Y. Zhao, J. Appl. Phys. 117, 224101 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    U. Khan, N. Adeela, C. Wan, M. Irfan, S. Naseem, S. Riaz, M. Iqbal, X. Han, Superlattices Microstruct. 92, 374 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    L.W. Yeary, J.-W. Moon, C.J. Rawn, L.J. Love, A.J. Rondinone, J.R. Thompson, B.C. Chakoumakos, T.J. Phelps, J. Magn. Magn. Mater. 323, 3043 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    R.M. Cornell, U. Schwertmann, in The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, Hoboken, 2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Shoba
    • 1
  • S. Kaleemulla
    • 2
    Email author
  • C. Krishnamoorthi
    • 3
  • G. Venugopal Rao
    • 4
  1. 1.Thin Films Laboratory, School of Advanced SciencesVITVelloreIndia
  2. 2.Center for Crystal GrowthVITVelloreIndia
  3. 3.Center for Nanotechnology ResearchVellore Institute of TechnologyVelloreIndia
  4. 4.Materials Physics DivisionIndira Gandhi Center for Atomic ResearchKalpakkamIndia

Personalised recommendations