Applied Physics A

, 125:142 | Cite as

Effect of nanostructures on rapid boiling of water films: a comparative study by molecular dynamics simulation

  • Peng Zhang
  • Leping ZhouEmail author
  • Lu Jin
  • Hui Zhao
  • Xiaoze Du


Nanostructures, such as post, sphere, cone, and cuboid, can drastically enhance the rapid boiling heat transfer from a solid plate to adjacent liquid molecules. In this work, we demonstrate the effect of nanostructures on the rapid boiling of water films by molecular dynamics simulation. The comparison between cubic and T-shaped nanostructures which are based on a copper plate is implemented. Rate of temperature rise and departure velocity from the structure for water boiling on T-shaped nanostructure have the greatest values followed by cubic nanostructure and flat plate. The densities of water films above these nanostructures are higher than that above flat plate. Departure velocity and restrictions on the movement of water molecules due to the structure beneath the cuboids can affect the heat transfer coefficient between water film and copper plate with T-shaped nanostructure. The heat flux vs. the time in the non-equilibrium phase change stage is given. With the variation of heat flux vs. time being similar, cubic and T-shaped nanostructures show greater heat fluxes than that of the plate when the vapor films appear. It is strongly recommended to use the new nanostructure for rapid boiling, and further study on the mechanisms of liquid molecules behaviors in nanostructures with various structural parameters is suggested for process intensification.



The authors are grateful to the financial supports from the National Natural Science Foundation of China (No. 51876058).


  1. 1.
    R.C. Reid, Adv. Chem. Eng. 12, 105 (1983)CrossRefGoogle Scholar
  2. 2.
    X. Huai, G. Wang, R. Jin, T. Yin, Y. Zou, Heat Mass Transf. 45, 117 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618 (2010)CrossRefGoogle Scholar
  4. 4.
    R. Kelly, A. Miotello, J. Appl. Phys. 87, 3177 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Kudryashov, S.D. Allen, J. Appl. Phys. 100, 104908 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    X. Yang, Y.Y. Yan, Appl. Therm. Eng. 31, 640 (2011)CrossRefGoogle Scholar
  7. 7.
    V.G. Baidakov, K.S. Bobrov, J. Chem. Phys. 140, 184506 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    V.H. Man, M.S. Li, P. Derreumaux, P.H. Nguyen, J. Chem. Phys. 148, 094505 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    S.M.T.K.S. Matsumoto, Y.Y.T. Kimura, Microscale Thermophys. Eng. 2, 49 (1998)CrossRefGoogle Scholar
  10. 10.
    Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. A 105, 2748 (2001)CrossRefGoogle Scholar
  11. 11.
    S.C. Maroo, J. Phys. Chem. Lett. 6, 3765 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Gu, H.M. Urbassek, Appl. Phys. B 81, 675 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Jakob, W. Fritz, Forsch. Gebiete Ingenieur. A 2, 435 (1931)CrossRefGoogle Scholar
  14. 14.
    A.K.M.M. Morshed, T.C. Paul, J.A. Khan, Appl. Phys. A 105, 445 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    H.R. Seyf, Y. Zhang, J. Heat Transf. 135, 121503 (2013)CrossRefGoogle Scholar
  16. 16.
    H.R. Seyf, Y. Zhang, Int. J. Heat Mass Transf. 66, 613 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Fu, Y. Mao, Y. Tang, Y. Zhang, W. Yuan, Nanoscale Microscale Thermophys. Eng. 19, 17 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Fu, Y. Mao, Y. Tang, Y. Zhang, W. Yuan, Heat Mass Transf. 52, 1469 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    W. Wang, H. Zhang, C. Tian, X. Meng, Nanoscale Res. Lett. 10, 158 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Zhang, F. Hao, H. Chen, W. Yuan, Y. Tang, X. Chen, Appl. Therm. Eng. 113, 208 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Tang, Y. He, L. Ma, X. Zhang, J. Xue, Int. J. Heat Mass Transf. 127, 237 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Bejan, M. Almogbel, Int. J. Heat Mass Transf. 43, 2101 (2000)CrossRefGoogle Scholar
  23. 23.
    B. Liu, Y. Bando, Z. Wang, C. Li, M. Gao, M. Mitome, X. Jiang, D. Golberg, Cryst. Growth Des. 10, 4143 (2010)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, J. Cui, Y. Liang, T. Chen, M. Lee, B. Yin, L.Y. Jin, J. Polym. Sci. A 51, 5021 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, M.W. Wu, J. Phys. Cond. Matt. 26, 065801 (2014)CrossRefGoogle Scholar
  26. 26.
    C.S. Wang, J.S. Chen, J. Shiomi, S. Maruyama, Int. J. Therm. Sci. 46, 1203 (2007)CrossRefGoogle Scholar
  27. 27.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  30. 30.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Chen, Y. Zou, Y. Wang, D. Han, B. Yu, Int. Commun. Heat Mass Transf. 98, 135 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Chen, Y. Zou, D. Sun, Y. Wang, B. Yu, Int. J. Heat Mass Transf. 118, 1143 (2018)CrossRefGoogle Scholar
  33. 33.
    T. Yamamoto, M. Matsumoto, J. Therm. Sci. Technol. 7, 334 (2012)CrossRefGoogle Scholar
  34. 34.
    K.F. Rabbi, S.I. Tamim, A.H.M. Faisal, K.M. Mukut, M.N. Hasan, AIP Conf. Proc. 1851, 020102 (2017)CrossRefGoogle Scholar
  35. 35.
    S.M. Shavik, M.N. Hasan, A.M. Morshed, J. Electron. Packag. 138, 010904 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peng Zhang
    • 1
  • Leping Zhou
    • 1
    Email author
  • Lu Jin
    • 1
  • Hui Zhao
    • 1
  • Xiaoze Du
    • 1
  1. 1.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy, Power and Mechanical EngineeringNorth China Electric Power UniversityBeijingChina

Personalised recommendations