Advertisement

Applied Physics A

, 125:162 | Cite as

One-step green synthesis of WO3 nanoparticles using Spondias mombin aqueous extract: effect of solution pH and calcination temperature

  • J. O. TijaniEmail author
  • O. Ugochukwu
  • L. A. Fadipe
  • M. T. Bankole
  • A. S. Abdulkareem
  • W. D. Roos
Article
  • 17 Downloads

Abstract

In this study, a novel green synthesis of tungsten trioxide (WO3) nanoparticles from ammonium paratungstate, (NH4)10W11O41·5H2O) and aqueous leaves extract of Spondias mombin was explored. The effect of solution pH (1, 4, 7,10, 13) and calcination temperature (250°, 350°, 450°, 550°, 650 °C) on the morphological characteristics and surface area of the nanoparticles were examined. The prepared WO3 nanoparticles were characterized using High-Resolution Scanning Electron Microscopy (HRSEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Brunauer Emmett and Teller (BET), and X-ray Photoelectron Spectroscopy (XPS). The HRSEM analysis showed the formation of highly dispersed less agglomerated spherical-shaped structures at each studied pH and calcination temperature except at pH 13. The particle size of the WO3 nanoparticles increased with increase in pH in the order of 13.8 < 14.3 < 16.7 < 17.6 nm for pH 1, 4, 7, and 10, respectively. While there was no evidence of formation of WO3 nanoparticles of definite size at pH 13. XRD patterns confirmed the existence of only monoclinic phase of WO3 irrespective of the solution pH and calcination temperature with average crystallite sizes of about 27.14 nm, 14.39 nm, and 5.90 nm at pH 1, 3, and 5, respectively. The BET analysis established that as-synthesized samples had higher surface area (352.59 m2/g) at pH 1 and calcination temperature (550 °C) than a commercial available WO3 (19.42 m2/g). It was also found that the specific surface area of the samples decreased from 352.59 to 223.67 m2/g, as the solution pH increased from 1 to 10. While for calcination temperature over the range of 250–650 °C, the surface area increased from 156.34 to 352.59 m2/g. XPS demonstrated the presence of W atom in the oxidation state of + 6 and lattice oxygen as O2−. The facile green route to prepared WO3 nanoparticles was accomplished and calcination temperature and solution pH play crucial role on the shape, size, and surface area of the material.

Notes

Acknowledgements

The authors acknowledge the financial assistance received from Tertiary Education Tax Fund (TETFUND) Nigeria with Grant number TETFUND/FUTMINNA/NRF/2017/02 is highly commendable. The authors remain grateful to the following; Prof.. W.D. Roos for (XPS analysis, University of the Free State, South Africa), Dr. Remy Bucher (XRD, ithemba Labs), and Dr. Franscious Cummings [HRTEM, Physics department, University of the Western Cape (UWC), South Africa].

Compliance with ethical standards

Conflict of interest

The authors declared no conflicts of interest.

References

  1. 1.
    I.O. Ademola, B.O. Fagemi, S.O. Idowu, Anthelminthic activity of extract of Spondias mombin against gastro intestinal nematodes of sheep: Studies in-vitro and in-vivo. Trop. Anim. Health Prod. 37(3), 223–235 (2005)CrossRefGoogle Scholar
  2. 2.
    M.K. Aminian, Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles. J. Mater. Res. 25(1), 141–148 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Bamwenda, H. Arakawa, The visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A 210(1–2), 181–191 (2001)CrossRefGoogle Scholar
  4. 4.
    M.S. Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin, C. Fasel, T. Herrmann, H. Breitzke, A. Gurlo, R. Riedel, Visible light photocatalysis with c-WO(3–x)/WO3xH2O nano-heterostructures in-situ formed in mesoporous polycarbosilane-siloxane polymer. J. Am. Chem. Soc. 135, 4467–4475 (2013)CrossRefGoogle Scholar
  5. 5.
    M.M.H. Bhyuiyan, T. Ueda, T. Ikegami, K. Ebihara, Gas sensing properties of metal doped WO3 thin film sensors prepared by pulsed laser deposition and DC sputtering process. Jpn. J. Appl. Phys. 45(1), 8469–8472 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C. Chang, M. Yang, H. Wen, J. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10, 178–182 (2002)Google Scholar
  7. 7.
    R.P.S. Chauhan, C. Gupta, D. Prakash, Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int. J. Bioassays 1(7), 6–10 (2012)Google Scholar
  8. 8.
    N. Cicco, M. Lanorte, M. Paraggio, M. Viggiano, V. Lattanzio, A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 91(1), 107–110 (2009)CrossRefGoogle Scholar
  9. 9.
    M.K Deepa, T.N. Suryaprakash, K. Pawan, Green synthesized silver nanoparticles. J. Chem. Pharm. Res. 8(1), 411–419 (2016)Google Scholar
  10. 10.
    A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A 369, 27–33 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Feng, S. Wang, B. Geng, Titanium (IV) doped WO3 nanocuboids: Fabrication and enhanced visible-light-driven photocatalytic performance. Nanoscale 3, 3695–3699 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F.D. Fonzo, A. Bailini, V. Russo, A.A. Baserga, A. Cattaneo, M.G. Beghi, P.M. Ossi, C.S. Casari, A.L. Bassi, C.E. Bottani, Synthesis and characterization of tungsten and tungsten oxide nanostructured films. Catal. Today 116(1), 69–73 (2006)CrossRefGoogle Scholar
  13. 13.
    Z. Gu, H. Li, T. Zhai, W. Yang, Y. Xia, Y. Ma, J. Yao, Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid State Chem. 180, 98–105 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    O.M. Hussain, A.S. Swapnasmitha, J. John, R. Pinto, Structure and morphology of laser-ablated WO3 thin films. J. Appl. Phys. A 81(6), 291–1297 (2005)CrossRefGoogle Scholar
  15. 15.
    A.: Vacuum, Visible light-induced photocatalytic properties of WO3 films deposited by dc reactive magnetron sputtering. J. Vac. Sci. Technol. Surf. Films 30(3), 5082–5086 (2012)Google Scholar
  16. 16.
    S.Q. Jin, G.H. Liu, Preparation and photocatalytic activity of fluorine doped WO3 under UV and visible light. Dig. J. Nanomater. Biostruct. 4(11), 1179–1188 (2016)MathSciNetGoogle Scholar
  17. 17.
    A.A. Joraid, S.N. Almari, Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating. Phys. B 391(2), 199–205 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M. Karthik, M. Parthibavarman, A. Kumaresan, S. Prabhakaran, V. Hariharan, R. Poonguzhali, S. Sathishkumar, One-step microwave synthesis of pure and Mn doped WO3 nanoparticles and its structural, optical and electrochemical properties. J. Mater. Sci. 28(9), 1–8 (2016)Google Scholar
  19. 19.
    N.S. Kavitha, K.S. Venkatesh, N.S. Palani, R. Ilangovan, Fungus mediated biosynthesis of WO3 nanoparticles using Fusarium solani extract. Am. Inst. Phys. Conf. Proc. 1832, 050130 (2017)Google Scholar
  20. 20.
    T.J. Kemp, R.A. Mcintyre, Transition metal-doped titanium(IV) dioxide: characterization and influence on photodegradation of poly(vinyl chloride). Polym. Degrad. Stab. 91(1), 165–194 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Komaba, N. Kumagai, K. Kato, H. Yashiro (2000). Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide, Solid State Ionics 135, 193–197CrossRefGoogle Scholar
  22. 22.
    X. Li, H. Xu, Z.S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 270974 (2011)Google Scholar
  23. 23.
    Q.H. Li, L.M. Wang, D.Q. Chu, X.Z. Yang, Z.Y. Zhang, Cylindrical stacks and flower-like tungsten oxide microstructures: controllable synthesis and photocatalytic properties. Ceram. Int. 40(3), 4969–4973 (2014)CrossRefGoogle Scholar
  24. 24.
    Z. Liu, Y. Bando, C. Tang, Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179–182 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    H. Liu, T. Peng, D. Ke, Z. Peng, C. Yan, Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles. Mater. Chem. Phys. 104, 377–383 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, Y. Li, W. Li, S. Han, C. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light. Appl. Surf. Sci. 258(12), 5038–5045 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Liu, Q. Li, S. Gao, J.K. Shang, Template-free solvothermal synthesis of WO3/WO3·H2O hollow spheres and their enhanced photocatalytic activity from the mixture phase effect. Cryst. Eng. Commun. 16, 7493–7501 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Lin, P. Hu, Y. Zhang, M. Fan, Z. He, C.K. Ngaw, J.S.C. Loo, D. Liao, T.T.Y. Tan, Understanding the photo electrochemical properties of a reduced graphene oxide-WO3 heterojunction photo anode for efficient solar light- driven overall water splitting. R. Soc. Chem. Adv. 3, 9330–9336 (2013)Google Scholar
  29. 29.
    E. Luevano-Hipolito, A. la Cruz, E. Lopez-Cuellar, Q.L. Yu, H.J.H. Brouwers, Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation. Mater. Chem. Phys. 148, 208–213 (2014)CrossRefGoogle Scholar
  30. 30.
    A.H. Mahan, P.A. Parilla, K.M. Jones, A.C. Dillon, Hot-wire chemical vapor deposition of crystalline tungsten oxide nanoparticles at high density. Chem. Phys. Lett. 413(1), 88–94 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    A. Mahshad, M.A. Reza, R. Alimorad, Preparation of different WO3 nanostructures and comparison of their ability for congo red photo degradation. Iran. J. Chem. Chem. Eng. 31(1), 31–38 (2012)Google Scholar
  32. 32.
    A.K. Mittal, Y. Chisti, C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013)CrossRefGoogle Scholar
  33. 33.
    W. Mu, X. Xie, X. Li, R. Zhang, Q. Yu, K. Lv, H. Wei, Y. Jian, Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance. R. Soc. Chem. 4, 36064–36070 (2014)Google Scholar
  34. 34.
    T.A. Nguyen, T.S. Jun, M. Rashid, Y.S. Kim, Synthesis of mesoporous tungsten oxide nanofibers using the electrospinning method. Mater. Lett. 65(17–18), 2823–2825 (2011)CrossRefGoogle Scholar
  35. 35.
    E.S. Omoregie, E.I. Oikeh, Comparative studies on the phytochemical composition, phenolic content and antioxidant activities of methanol leaf extracts of Spondias mombin and Polyathia longifolia. Jordan J. Biol. Sci. 8(2), 145–149 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, L. Zan, Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. J. Solid State Chem. 194, 250–256 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    N. Prabhu, S. Agilan, N. Muthukumarasamy, T.S. Senthil, Preparation and characterizations of copper doped WO3 nanoparticles prepared by solvo-thermal cum chemical method. Int. J. Chem. Technol. Res. 6(7), 3487–3490 (2014)Google Scholar
  38. 38.
    S. Rajagopal, D. Nataraj, D. Mangalaraj, Y. Djaoued, J. Robichaud, O.Y. Khyzhun, Controlled growth of WO3 nanostructures with three different morphologies and their structural, optical, and photodecomposition studies. Nanoscale Res. Lett. 4, 1335–1342 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    M.C. Roa, O.M. Hussain, Growth and characterization of vacuum evaporated WO3 thin films for electrochromic device application. Res. J. Chem. Sci. 1(17), 92–95 (2011)Google Scholar
  40. 40.
    M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, W. Ueda, Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. J. Mater. Chem. 20, 1811–1818 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu, Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B Environ. 166–167, 112–120 (2014)Google Scholar
  42. 42.
    J. Sungpanich, T. Thongtem, S. Thongtem, Photocatalysis of WO3 nanoplates synthesized by conventional-hydrothermal and microwave-hydrothermal methods and of commercial WO3 nanorods. J. Nanomater. 2014, 739251 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Sun, N. Xu, Y.W. Cao, J.N. Yao, E.G. Wang, Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res. 15(4), 927–933 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    S. Supothina, P. Seeharaj, S. Yoriya, M. Sriyudthsak, Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931–936 (2007)CrossRefGoogle Scholar
  45. 45.
    C. Suwanchawalit, S. Wongnawa, Influence of calcination on the microstructures and photocatalytic activity of potassium oxalate-doped TiO2 powders. Appl. Catal. A 338(2), 87–99 (2008)CrossRefGoogle Scholar
  46. 46.
    K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257–262 (2010)CrossRefGoogle Scholar
  47. 47.
    I. Vamvasakis, I. Georgaki, D. Vernardou, G. Kenanakis, N. Katsarakis, Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J. Sol-Gel Sci. Technol. 76(1), 120–128 (2015)CrossRefGoogle Scholar
  48. 48.
    J. Wang, E. Khoo, P.S. Lee, J. Ma, Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J. Phys. Chem. C 113, 9655–9658 (2009)CrossRefGoogle Scholar
  49. 49.
    Y. Wicaksana, S. Liu, J. Scott, R. Amal, Tungsten Trioxide as a Visible Light Photocatalyst for Volatile. Org. Carbon Remov. Mol. 19, 17747–17762 (2014)Google Scholar
  50. 50.
    G. Xin, W. Guo, T. Ma, Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Appl. Surf. Sci. 256, 165–169 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    L. Xiong, T. He, Synthesis and characterization of ultrafine tungsten and tungsten oxide nanoparticles by a reverse microemulsion-mediated method. Chem. Mater. 18, 2211–2218 (2006)CrossRefGoogle Scholar
  52. 52.
    Z. Yaakob, M. Pudukudy, R. Rajendran, Visible light active novel WO3 nanospheres for methylene blue degradation. Der Pharma Chem. 5(6), 208–212 (2013)Google Scholar
  53. 53.
    Z.G. Zhao, M. Miyauchi, Shape modulation of tungstic acid and tungsten oxide hollow structures. J. Phys. Chem. C 113(16), 6539–6546 (2009)CrossRefGoogle Scholar
  54. 54.
    Y. Zheng, G. Chen, Y. Yu, J. Sun, Y. Zhou, J. Pei, Template and surfactant free synthesis of hierarchical WO3·0.33H2O via a facile solvothermal route for photocatalytic RhB degradation. Cryst. Eng. Commun. 16, 6107–6113 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. O. Tijani
    • 1
    • 3
    Email author
  • O. Ugochukwu
    • 1
    • 3
  • L. A. Fadipe
    • 1
  • M. T. Bankole
    • 1
    • 3
  • A. S. Abdulkareem
    • 2
    • 3
  • W. D. Roos
    • 4
  1. 1.Department of ChemistryFederal University of TechnologyMinnaNigeria
  2. 2.Department of Chemical EngineeringFederal University of TechnologyMinnaNigeria
  3. 3.Nanotechnology Research Group, Centre for Genetic Engineering and Biotechnology (CGEB)Federal University of TechnologyMinnaNigeria
  4. 4.Department of PhysicsUniversity of the Free StateBloemfonteinRepublic of South Africa

Personalised recommendations