Advertisement

Applied Physics A

, 125:170 | Cite as

Effects of material parameters on the band gaps of two-dimensional three-component phononic crystals

  • Chao Li
  • Linchang MiaoEmail author
  • Quan You
  • Huanglei Fang
  • Xiaodong Liang
  • Lijian Lei
Article
  • 20 Downloads

Abstract

In this paper, the effects of material parameters on the band gaps of two-dimensional (2D) three-component phononic crystals (PCs) are investigated based on improved plane wave expansion method (IPWE). The theoretical derivation is based on the elastic wave equations, and the effects on band gaps for both in-plane (xy-mode) and anti-plane modes (z-mode) are discussed in detail. Results show that the material parameters directly determining the band gaps include mass density ratio, shear modulus ratio, and Poisson’s ratio for xy-mode, and mass density ratio and shear modulus ratio for z-mode; for the three-component PCs with Bragg gaps, wide band gap appears in the case of large density mismatches and large shear modulus ratio of scatterer to matrix, and the Poisson’s ratio of the matrix has more influence on the band gap; for the three-component PCs with local resonance gaps, wide band gap appears in the case of large mass density ratio of scatterer to matrix and small mass density ratio of coating layer to matrix, large shear modulus ratio of scatterer to matrix and small shear modulus ratio of coating layer to matrix. These conclusions can be used to guide the band gap designing of the three-component PCs.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 51578147). The authors thank the valuable comments from the reviewers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M.S. Kushwaha, P. Halevi, Appl. Phys. Lett. 64(9), 1085–1087 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Kushwaha, P. Halevi, G. Martinez et al., Phys. Rev. B 49(4), 2313–2322 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    M.M. Sigalas, E.N. Economou, Solid State Commun. 86(3), 141–143 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynsi et al., J. Phys Condens. Mat. 6(42), 8759–8770 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    M.M. Sigalas, E.N. Economou, Epl Europhys. Lett. 36(4), 241–246 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    J.V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala et al., Phys. Rev. Lett. 80(24), 5325–5328 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    G. Wang, L.H. Shao, Y.Z. Liu et al., Chin. Phys. 15(8), 1843–1848 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    W.M. Kuang, Z.L. Hou, Y.Y. Liu, Phys. Lett. A 332(5–6), 481–490 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Sigalas, J. Acoust. Soc. Am. 101(3), 1256–1261 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    M. Torres, F.R. Montero de Espinosa, J.L. Aragón, Phys. Rev. Lett. 86(19), 4282–4285 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    X.Z. Zhou, Y.S. Wang, C.Z. Zhang, J. Appl. Phys. 106, 014903 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    W.M. Kuang, Z.L. Hou, Y.Y. Liu et al., J. Phys. D Appl. Phys. 39(10), 2067–2071 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    F.G. Wu, Z.Y. Liu, Y.Y. Liu et al., Phys. Rev. E 66, 046628 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    I. Śλιωα, M. Krawczyk, Acta. Phys. Pol. A 108(6), 943–957 (2005)CrossRefGoogle Scholar
  15. 15.
    R. Min, F.G. Wu, L.H. Zhong et al., J. Phys. D Appl. Phys. 39(10), 2272–2276 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    X. Zhang, Z.Y. Liu, Y.Y. Liu et al., Phys. Lett. A 313(5–6), 455–460 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhang, Y.Y. Liu, F.G. Wu et al., Phys. Lett. A 317(1–2), 144–149 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Z.Y. Liu, C.T. Chan, P. Sheng, Phys. Rev. B 65, 165116 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    C.S. Kee, J.E. Kim, H.Y. Park et al., J. Appl. Phys. 87(4), 1593–1596 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Y.H. Liu, C.C. Chang, R.L. Chern et al., Phys. Rev. B 75, 054104 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    X.X. Su, Y.F. Wang, Y.S. Wang, Ultrasonics 52(2), 255–265 (2012)CrossRefGoogle Scholar
  22. 22.
    T.X. Ma, Y.S. Wang, X.X. Su et al., Phys. B 407(21), 4186–4192 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    T.X. Ma, X.X. Su, Y.S. Wang et al., Phys. Scr. 87, 055604 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    P. Wang, J. Shim, K. Bertoldi, Phys. Rev. B 88, 014304 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Z.Y. Liu, X.X. Zhang, Y.W. Mao et al., Science 289(5485), 1734–1736 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Zhang, Z.X.K. Han, G.M. Ji, J. Phys. Chem. Solids 123, 235–241 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Zhang, Z.X.K. Han, G.M. Ji, Int. J. Mod. Phys. B 32(4), 18500344 (2018)CrossRefGoogle Scholar
  28. 28.
    Y.C. Zhao, L.Z. Deng, L.B. Yuan, Phys. Scr. 85(2), 25401 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.J. Cao, Z.L. Hou, Y.Y. Liu, Phys. Lett. A 327(2–3), 247–253 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    L.F. Li, J. Opt. Soc. Am. A 13(9), 1870–1876 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    R. Sainidou, N. Stefanou, A. Modinos, Phys. Rev. B 66(21), 212301 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    H. Zhao, Y. Liu, G. Wang et al., Phys. Rev. B 72(1), 012301 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chao Li
    • 1
  • Linchang Miao
    • 1
    Email author
  • Quan You
    • 1
  • Huanglei Fang
    • 1
  • Xiaodong Liang
    • 1
  • Lijian Lei
    • 1
  1. 1.Institute of Geotechnical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations