Advertisement

Applied Physics A

, 125:151 | Cite as

Au–Ag alloy nanoparticles supported on ordered mesoporous carbon (CMK-3) with remarkable solar thermal conversion efficiency

  • Guihua Zhu
  • Lingling WangEmail author
  • Yali Zhang
  • Wei YuEmail author
  • Huaqing Xie
Article
  • 24 Downloads

Abstract

Dual plasmonic Au–Ag alloy nanoparticles supported on ordered mesoporous carbon (Au–Ag/CMK-3) have been fabricated by the method of partial substitution of silver on CMK-3 with gold. Near-spherical Ag–Au nanoparticles with a diameter of 8–15 nm are uniformly coated on the surface of CMK-3. Attributed to dual localized surface plasmon resonance (LSPR) effect of Au–Ag alloy nanoparticles, the Au–Ag/CMK-3 composites have remarkable broadband absorption in the visible and near-infrared regions. All CMK-3 based nanofluids show much higher photothermal conversion efficiency than the base liquid of ethylene glycol (EG). Au–Ag alloy nanoparticles further enhance the photothermal conversion efficiency of CMK-3, which is 71.1% compared with 67.4% and 65.6% for Au/CMK-3 and Ag/CMK-3, respectively. The Au–Ag/CMK-3 nanomaterials pay new ways for fabrication promising photothermal nanofluids for application in direct absorption solar collectors.

List of symbols

m

Mass of nanofluids (g)

Tam

The ambient temperature (°C)

B

Constant rate of heat dissipation (s−1)

Sm

The incident solar heat flux (W m−2)

λ

Wavelength (nm)

I(λ)

Spectral solar irradiance

α(λ)

Transmittance per unit wavelength

l

Penetration distance (cm)

Cp

Specific heat [J/(kg × ℃)]

Teq

The equilibrium temperatures (°C)

T(t)

Temperature of the nanofluids at time t (°C)

η

Photothermal conversion efficiency

A

Area exposed to solar irradiation (m2)

Am

Solar-weighted absorption coefficient

T(λ)

Transmittance coefficient

I(λ)

The spectral solar irradiance

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (51876112, and 51590901), Shanghai Municipal Natural Science Foundation (Grant no. 17ZR1411000), the Key Subject of Shanghai Polytechnic University (Material Science and engineering, XXKZD1601 and EGD18YJ0042), the Graduate Program Foundation of Shanghai Polytechnic University (EGD17YJ0015), and Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering).

References

  1. 1.
    C.G. Granqvist, Solar energy materials. Appl. Phys. A 52, 83–93 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    W. Chun, S.J. Oh, H.L. Sang, K. Chen, Maximum efficiency of solar energy conversion. Int. J. Energy Res. 36, 928–934 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Panneerselvam, V. Murugadoss, V. Elayappan, N. Lu, Z.H. Guo, S. Angaiah, Influence of anti-reflecting nature of MgF2 embedded electrospun TiO2 nanofibers based photoanode to improve the photoconversion efficiency of DSSC. ES Energy Environ. 1, 99–105 (2018)Google Scholar
  4. 4.
    B.F. Liu, Y.R. Jin, G.J. Xie, Z.J. Wang, H.Q. Wen, N.Q. Ren, D.F. Xing, Simultaneous photo catalysis of SiC/Fe3O4 nano-particles and photo-fermentation of Rhodopseudomonas sp. nov. strain A7 for enhancing hydrogen production under visible light irradiation. ES Energy Environ. 1, 56–66 (2018)Google Scholar
  5. 5.
    T.P. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A. Taylor, Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy 2, 033102 (2010)CrossRefGoogle Scholar
  6. 6.
    N. Arai, Y. Itaya, M. Hasatani, Development of a “volume heat-trap” type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation. Sol. Energy 32, 49–56 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    H. Jin, G. Lin, L. Bai, M. Amjad, F. Bandarra, P. Enio, D. Wen, Photothermal conversion efficiency of nanofluids: an experimental and numerical study. Sol. Energy 139, 278–289 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    N. Tan, Y. Zhang, B. Wei, C. Zou, Experimental investigation on optical and thermal properties of propylene glycol-water based nanofluids for direct absorption solar collectors. Appl. Phys. A 124, 569 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Q.B. He, S.F. Wang, S.Q. Zeng, Z.Z. Zheng, Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers. Manage. 73, 150–157 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Brus, Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008)CrossRefGoogle Scholar
  11. 11.
    J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano. Today 10, 67–80 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Chen, Y. He, J. Zhu, R.K. Dong, Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy. Convers. Manage. 112, 21–30 (2016)CrossRefGoogle Scholar
  13. 13.
    M.C. Wu, A.R. Deokar, J.H. Liao, P.Y. Shih, Y.C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7, 1281–1290 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Delfani, M. Karami, M.A. Akhavan-Behabadi, Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew. Energy 87, 754–764 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, P. Sansoni, Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol. Energy Mater. Sol. Cells 95, 2994–3000 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Mercatelli, E. Sani, G. Zaccanti, F. Martelli, P.D. Ninni, Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers. Nanosc. Res. Lett. 6, 282–290 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    L.L. Wang, G.H. Zhu, W. Yu, J. Zeng, X.X. Yu, Q. Li, H.Q. Xie, Integrating nitrogen-doped graphitic carbon with Au nanoparticles for excellent solar energy absorption properties. Sol. Energy Mater. Sol. Cells 184, 1–8 (2018)CrossRefGoogle Scholar
  18. 18.
    D. Lee, J. Lee, Y.P. Kim, J. Kim, T. Hyeon, Highly sensitive and magnetically switchable biosensors using ordered mesoporous carbons. ACS Symp. 986, 234–242 (2008)CrossRefGoogle Scholar
  19. 19.
    H.H. Wei, S.N. Lai, Y.L. An, Synthesis of strong light scattering absorber of TiO2-CMK-3/Ag for photocatalytic water splitting under visible light irradiation. ACS Appl. Mater. Interfaces 7, 8412–8418 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, X. Bai, S. Li, In-situ preparation of Pd nanoparticles in the pore channel of CMK-3 for Suzuki coupling reaction. Microporous Mesoporous Mater. 260, 40–44 (2018)CrossRefGoogle Scholar
  21. 21.
    J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, Ordered, Nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16, 1432–1436 (2004)CrossRefGoogle Scholar
  22. 22.
    K.W. Park, H.N. Yang, W.H. Lee, B.S. Choi, W.J. Kim, Effect of hybridization of Pt supported mesoporous-CMK-3 into Pt-CB as cathode catalyst on cell performance and durability in proton exchange membrane fuel cell. Microporous Mesoporous Mater. 220, 282–289 (2016)CrossRefGoogle Scholar
  23. 23.
    J. He, K. Ma, J. Jin, Z. Dong, J. Wang, R. Li, Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption. Microporous Mesoporous Mater. 121, 173–177 (2009)CrossRefGoogle Scholar
  24. 24.
    L. Hu, S. Dang, X. Yang, J. Dai, Synthesis of recyclable catalyst–sorbent Fe/CMK-3 for dry oxidation of phenol. Microporous Mesoporous Mater. 147, 188–193 (2012)CrossRefGoogle Scholar
  25. 25.
    H.H. Wei, S.N. Lai, C.Y. Su, M. Yin, D. Li, Combined Au-plasmonic nanoparticles with mesoporous carbon material (CMK-3) for photocatalytic water splitting. Appl. Phys. Lett. 134, 324–332 (2015)Google Scholar
  26. 26.
    X. Wang, D. Cao, X. Tang, J. Yang, D. Jiang, M. Liu, N. He, Z. Wang, Coating carbon nanosphere with patchy gold for production of highly efficient photothermal agent. ACS Appl. Mater. Interfaces 8, 19321 (2016)CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, J. Shi, Z. Song, X. Zhu, Y. Zhu, S. Cao, A synergistically enhanced photothermal transition effect from mesoporous silica nanoparticles with gold nanorods wrapped in reduced graphene oxide. J. Mater. Sci. 53, 1–14 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Yang, A. Zhang, G. Gao, D. Han, C. Han, J. Wang, H. Lu, J. Liu, M. Tong, Photocatalytic oxidation of methanol to methyl formate in liquid phase over supported silver catalysts. Catal. Commun. 43, 192–196 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Primo, A. Corma, H. García, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Hong, Y. Choi, S. Park, Shape control of Ag shell growth on Au nanodisks. Chem. Mater. 23, 5375–5378 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Hu, A.Q. Zhang, H.J. Li, D.J. Qian, M. Chen, Synthesis, study, and discretedipole approximation simulation of Ag–Au bimetallic nanostructures. Nanoscale Res. Lett. 11, 1–9 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Moskovits, I. Srnovášloufová, B. Vlčková, Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435–10446 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Liu, A.Q. Wang, Y.S. Chi, A.H. Lin, C.Y. Mou, Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 109, 40–43 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Chen, Y. He, J. Zhu, Preparation of Au–Ag bimetallic nanoparticles for enhanced solar photothermal conversion. Int. J. Heat Mass Transf. 114, 1098–1104 (2017)CrossRefGoogle Scholar
  35. 35.
    R.C. Carrillo-Torres, M.D.J. García-Soto, S.D. Morales-Chávez, A. Garibay-Escobar, J. Hernández-Paredes, Hollow Au–Ag bimetallic nanoparticles with high photothermal stability. RSC Adv. 6, 41304–41312 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Zhao, Q. Huo, J. Feng, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 136, 6024–6036 (1998)CrossRefGoogle Scholar
  37. 37.
    S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000)CrossRefGoogle Scholar
  38. 38.
    L.L. Wang, G. Zhu, W. Yu, D. Zhu, Y. Zhang, L. Zhang, H. Xie, Photothermal properties of near-spherical gold nanofluids with strong localized surface plasmon resonance. J. Therm. Sci. Eng. Appl. 10, 011015 (2017)CrossRefGoogle Scholar
  39. 39.
    N. Chen, H. Ma, Y. Li, J. Cheng, C. Zhang, D. Wu, H. Zhu, Complementary optical absorption and enhanced solar thermal conversion of CuO–ATO nanofluids. Sol. Energy Mater. Sol. Cells 162, 83–92 (2017)CrossRefGoogle Scholar
  40. 40.
    Z. Meng, Y. Li, N. Chen, D. Wu, H. Zhu, Broad-band absorption and photo-thermal conversion properties of zirconium carbide aqueous nanofluids. J. Taiwan Inst. Chem. Eng. 80, 286–292 (2017)CrossRefGoogle Scholar
  41. 41.
    J.Z. Zhu, J. Yang, B.L. Deng, Synthesis, modification, and characterization of ordered mesoporous carbons for aqueous mercury ion removal. Carbon 47, 351 (2009)CrossRefGoogle Scholar
  42. 42.
    C. Han, X. Yang, G. Gao, J. Wang, H. Lu, Selective oxidation of methanol to methyl formate on catalysts of Au–Ag alloy nanoparticles supported on titania under UV irradiation. Green Chem. 16, 3603–3615 (2014)CrossRefGoogle Scholar
  43. 43.
    R.E. Watson, J. Hudis, M.L. Perlman, Charge flow and compensation in gold alloys. Phys. Rev. B 4, 4139–4144 (1971)ADSCrossRefGoogle Scholar
  44. 44.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279, 548–552 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    D. Rativa, L.A. Gómez-Malagón, Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Sol. Energy 118, 419–425 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    N. Hordy, D. Rabilloud, J.L. Meunier, S. Coulombe, High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol. Energy 105, 82–90 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    T.B. Gorji, A.A. Ranjbar, S.N. Mirzababaei, Optical properties of carboxyl functionalized carbon nanotube aqueous nanofluids as direct solar thermal energy absorbers. Sol. Energy 119, 332–342 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    W.D. Drotning, Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid. Sol. Energy 20, 313–319 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental and Materials Engineering, College of EngineeringShanghai Polytechnic UniversityShanghaiChina
  2. 2.Research Center of Resource Recycling Science and EngineeringShanghai Polytechnic UniversityShanghaiChina

Personalised recommendations