Advertisement

Applied Physics A

, 125:139 | Cite as

Understanding structural, optical, magnetic and electrical performances of Fe- or Co-substituted spinel LiMn1.5Ni0.5O4 cathode materials

  • M. M. S. Sanad
  • H. A. Abdellatif
  • Elsayed M. Elnaggar
  • Gamal M. El-Kady
  • M. M. RashadEmail author
Article
  • 30 Downloads

Abstract

Spinel LiMn1.5Ni0.5O4 (LNMO) and LiMn1.5Ni0.25M0.25O4(M=Co (LNCMO) or Fe LNFMO) have been purposefully tailored using a sol–gel auto-combustion method at low annealing temperature. Well crystalline disordered spinel Fd3m structure was formed. The particles of LNMO sample evinced a regular octahedron shape-like morphology with wide particle size distribution from 42 to 82 nm. However, the Co- and Fe-doped LNMO samples were obtained from larger and flattened particles with lower facets particles and narrower particle size distribution (55–80 nm). EDX spectroscopy confirmed the elemental analysis were uniformly distributed in the samples. The band gap was found to decrease with Co3+ and Fe3+ ion substitution, indicating a shortening in the distance between the valence and the conduction bands. The magnetic properties indicated weak ferromagnetic performance. EIS spectra evidenced that a typical semicircle was revealed for each cell, suggesting the absence of ionic conductivity contribution. The values of charge transfer resistance (Rct) were equal to 16.1, 3.4 and 9.3 kΩ for the LNMO, LNCMO and LNFMO cells, respectively. The AC conductivity measurements showed a faster kinetic rate and lower activation energy of conduction for LiNi0.25Co0.25Mn1.5O4.

References

  1. 1.
    M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V. Subba Rao, and B. V. R. Chowdari,,(Li, Al)-co-doped spinel, Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries. Electrochim. Acta 88, 745–755 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Yu, X. Dong, Y. Pang, Y. Wang, Y. Xia, High power lithium-ion battery based on spinel cathode and hard carbon anode. Electrochim. Acta 228, 251–258 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.-F. Deng, S.-X. Zhao, P.-Y. Zhai, G. Cao, C.-W. Nan, Impact of lithium excess on the structural and electrochemical properties of the LiNi 0.5 Mn 1.5 O 4 high-voltage cathode material. J. Mater. Chem. A 3(40), 20103–20107 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Kunduraci, G.G. Amatucci, Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J. Electrochem. Soc. 153(7), A1345–A1352 (2006)CrossRefGoogle Scholar
  5. 5.
    J.C. Fang, Y.-F. Xu, G.-L. Xu, S.-Y. Shen, J. Taoli, L. Huang, S.-G. Sun. Fabrication of densely packed LiNi0.5Mn1.5O4 cathode material with excellent long-term cycleability for high-voltage lithium ion batteries. J. Power Sources 304, 15–23 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 8(7), 4661–4675 (2016)CrossRefGoogle Scholar
  7. 7.
    V.A. Online, E. Lee, A. Manthiram, Influence of cation ordering and lattice bistortion on the charge—discharge behavior of LiMn1.5Ni0.5O4 spinel between 5.0 and 2.0 V. J. Mater. Chem. A 1, 3118–3126 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Jang, H. Jung, B. Scrosati, Y. Sun, Improved Co-substituted, LiNi0.5–xCo2xMn1.5–xO4, lithium ion battery cathode materials. J. Power Sources 220:, 354–359 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    O. Sha et al., Improvement of cycle stability at elevated temperature and high rate for LiNi0.5–xCuxMn1.5O4 cathode material after Cu substitution. Mater. Res. Bull. 48(4), 1606–1611 (2013)CrossRefGoogle Scholar
  10. 10.
    K.R. Chemelewski, A. Manthiram, Origin of Site disorder and oxygen Nonstoichiometry in LiMn1.5Ni0.5MxO4(M=Cu and Zn) cathodes with divalent dopant. J. Phys. Chem. C 117(24), 12465–12471 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Lin, S.H. Wang, Z.L. Gong, X.K. Huang, Y. Yang, A strategy to improve cyclic performance of LiNi0.5Mn1.5O4 in a wide voltage region by Ti-doping. J. Electrochem. Soc. 160(5), A3036–A3040 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Liu, Y. Lu, J.B. Goodenough, Rate properties and elevated-temperature performances of LiNi0.5–xCr2xMn1.5–xO4 (0 ≤ 2x ≤ 0.8) as 5 V cathode materials for lithium-ion batteries. J. Electrochem. Soc. 157(11), A1269 (2010)CrossRefGoogle Scholar
  13. 13.
    D.W. Shin, C.A. Bridges, M.P. Paranthaman, A. Manthiram, Role of cation ordering and surface segregation in high-voltage ion batteries. J. Chem. Mater. 24 19, 3720–3731 (2012)CrossRefGoogle Scholar
  14. 14.
    E.-S. Lee, A. Manthiram, Influence of doping on the cation ordering and charge–discharge behavior of LiMn1.5Ni0.5–xMxO4 (M=Cr, Fe, Co, and Ga) spinels between 5.0 and 2.0 V. J. Mater. Chem. A 1(9), 3118 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Mao, M. Ma, P. Liu, J. Hu, G. Shao, V. Battaglia, K. Dai, G. Liu, The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. Solid State Ionics 292, 70–74 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Knapp, O. Dolotko, B. Das, H. Ehrenberg, A. Bhaskar, Enhancement of electrochemical performance by simultaneous substitution of Ni and Mn with Fe in Ni-Mn spinel cathodes for Li-ion batteries. J. Power Sources 327, 507–518 (2016) , ADSCrossRefGoogle Scholar
  17. 17.
    G.B. Zhong, Y.Y. Wang, Y.Q. Yu, C.H. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4(M=Fe, Co, Cr) 5 v cathode materials for lithium ion batteries. J. Power Sources 205, 385–393 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Hai, A.K. Shukla, H. Duncan, G. Chen, Effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode material. J. Mater. Chem. A 111 759–769 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Thirunakaran, G.H. Lew, W.-S. Yoon, Cerotic acid assisted sol-gel synthesis and electrochemical performance of double doped spinels (LiCrxMgyMn2–x–yO4) as cathode materials for lithium rechargeable batteries. Powder Technol. 301, 197–210 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Wang, J. Du, Z. Li, Z. Wu, Sol-gel synthesis of Co-doped LiMn2O4 with improved high-rate properties for high-temperature lithium batteries. Ceram. Int. 40(2), 3527–3531 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Wang, D. Chen, J. Wang, G. Liu, W. Wu, G. Liang, Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method. Powder Technol. 292, 203–209 (2016)CrossRefGoogle Scholar
  22. 22.
    X.-Y. Feng, C. Shen, H.-F. Xiang, H.-K. Liu, Y.-C. Wu, C.-H. Chen, High rate capability of 5 V LiNi0.5Mn1.5O4 cathode material synthesized via a microwave assist method. J. Alloys Compd. 695, 227–232 (2017)CrossRefGoogle Scholar
  23. 23.
    D. Bhaskar, Mikhailova, N.K.-Yavuz, K., S. Nikolowski, N.N. Oswald, H. Bramnik, Ehrenberg 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Prog. Solid State Chem. 42(4), 128–148 (2014)CrossRefGoogle Scholar
  24. 24.
    J.-H. Kim, S.-T. Myung, C.S. Yoon, S.G. Kang, Y.-K. Sun, Comparative study of LiNi0.5Mn1.5O4 – δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd 3̄ m and P 4332. Chem. Mater. 16(10), 906–914 (2004)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, X. Lv, Y. Wen, F. Wang, H. Su, Carbon combustion synthesis of LiNi0.5Mn1.5O4 and its use as a cathode material for lithium ion batteries. J. Alloys Compd. 480(2), 802–805 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Zhu, W. Qi, Li, X. Liao, Preparation and electrochemical performance of 5 V LiNi0.5Mn1.5O4 cathode material by the composite co-precipitation method for high energy/high power lithium ion secondary batteries. Wuli Huaxue Xuebao 30(4), 669–676 (2014)Google Scholar
  27. 27.
    N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Structure and insertion properties of disordered and ordered LiNi 0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics (Kiel) 12(2): 117–126 (2006)CrossRefGoogle Scholar
  28. 28.
    P. Strobel, A. Ibarra-Palos, M. Anne, C. Poinsignon, A. Crisci, Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sci. 5(7), 1009–1018 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    T. Yang, K. Sun, Z. Lei, N. Zhang, Y. Lang, The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery. J. Alloys Compd. 502(1), 215–219 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Kozawa, D. Hirobe, K. Uehara, M. Naito, Low-temperature synthesis of LiNi0.5Mn1.5O4 grains using a water vapor-assisted solid-state reaction. J. Solid State Chem. 263, 94–99 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    N.D. Rosedhi, N.H. Idris, M.M. Rahman, M.F.M. Din, J. Wang, Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries. Electrochim. Acta 206, 374–380 (2016)CrossRefGoogle Scholar
  32. 32.
    J.H. Kim., A. Huq, M. Chi, N.P.W. Pieczonka, E. Lee, C.A. Bridges, M.M. Tessema, A. Manthiram, K.A. Persson, and B. R. Powell, Integrated nano-domains of disordered and ordered spinel phases in LiNi0.5Mn1.5O4for li-ion batteries. Chem. Mater. 26(15), 4377–4386 (2014)CrossRefGoogle Scholar
  33. 33.
    S. Feng, X. Kong, H. Sun, B. Wang, T. Luo, G. Liu, Effect of Zr doping on LiNi0.5Mn1.5O4 with ordered or disordered structures. J. Alloys Compd. 749, 1009–1018 (2018)CrossRefGoogle Scholar
  34. 34.
    O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Optical, electrical and magnetic properties of lanthanum strontium manganite La 1–x Sr x MnO 3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 19(9), 6878–6886 (2017)CrossRefGoogle Scholar
  35. 35.
    M.M. Rashad, D.A. Rayan, A.A. Ramadan, Optical and magnetic properties of CuO/CuFe2O4nanocomposites J. Mater.Sci., Mater Electron vol 23, no 8, pp. 2742–2749Google Scholar
  36. 36.
    M.W. Raja, S. Mahanty, R.N. Basu, Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method. J. Power Sources 192(2), 618–626 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    W. Branford, M.A. Green, D.A. Neumann, Structure and Ferromagnetism in Mn4+ Spinels: AM 0.5 Mn 1.5 O 4 (A = Li, Cu; M = Ni, Mg). Chem. Mater. 14(4), 1649–1656 (2002)CrossRefGoogle Scholar
  38. 38.
    T. Nakamura, M. Tabuchi, T. Konya, Y. Shiramata, Y. Kobayashi, Electrochemical and in-situ X-ray diffraction studies of LiMn1.5Ni0.5O4 particles synthesized using two-step preparation. Solid State Ionics 319, 105–109 (2018)CrossRefGoogle Scholar
  39. 39.
    N. Biškup, J.L. Martínez, M.E. Arroyo y P. de Dompablo, Díaz-Carrasco, J. Morales, Relation between the magnetic properties and the crystal and electronic structures of manganese spinels LiNi0.5Mn1.5O4 and LiCu0.5Mn1.5O4 – δ. J. Appl. Phys. 100(9), 093908 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. J. Magn. Magn. Mater. 309(1), 100–105 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    C.M. Julien, A. Ait-Salah, A. Mauger, F. Gendron, Magnetic properties of lithium intercalation compounds. Ionics, vol 12, no 1,pp. 21–32(2006)CrossRefGoogle Scholar
  42. 42.
    R. Amin, I. Belharouk, I. Part, Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode. J. Power Sources 348, 311–317 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    E.C.S. Transactions, T.E. Society, Structural, magnetic, electrical and electrochemical properties of O3-type layered materials: NaNi 1/3 Mn 1/3 Co. vol. 81, no. 1, pp. 79–86 (2017)Google Scholar
  44. 44.
    M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO 2 –TiO 2 –Li 2 B 4 O 7 glass system. J. Alloys Compd. 710, 312–322 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. M. S. Sanad
    • 1
  • H. A. Abdellatif
    • 2
  • Elsayed M. Elnaggar
    • 2
  • Gamal M. El-Kady
    • 2
  • M. M. Rashad
    • 1
    Email author
  1. 1.Central Metallurgical Research and Development InstituteHelwan, CairoEgypt
  2. 2.Faculty of Science, Chemistry DepartmentAl-Azhar UniversityNasr CityEgypt

Personalised recommendations