Advertisement

Applied Physics A

, 125:166 | Cite as

One- and two-photon-induced cyclotron–phonon resonance in modified-Pöschl–Teller quantum well

  • Khang D. Pham
  • Le DinhEmail author
  • Chuong V. Nguyen
  • Nguyen N. HieuEmail author
  • Pham T. Vinh
  • Le Thi Ngoc Tu
  • Huynh V. PhucEmail author
Article
  • 5 Downloads

Abstract

We study the two-photon-induced cyclotron–phonon resonance (CPR) effect resulting from the interaction between electrons and phonons in a quantum well with the modified-Pöschl–Teller (MPT) potential. The CPR is considered via the magneto-optical absorption coefficient (MOAC) and the full-width at half-maximum (FWHM). Numerical results are presented for a typical GaAs MPT quantum well. It is found that the quantum well parameters, such as well-depth and well-width, the magnetic field, and the temperature affect significantly the energy separation, the MOAC, and the FWHM. Obtained results agree well with previous theoretical and experimental results. Especially, we found two new rules of the well-depth and well-width-dependent FWHM, which should be tested by experimental works to examine their validities.

Notes

Acknowledgements

This work is funded by Ministry of Education and Training (Vietnam) under the project coded B2017-DHH-32.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    F.G. Bass, I.B. Levinson, Sov. Phys. JETP 22, 635 (1966)ADSGoogle Scholar
  2. 2.
    R.C. Enck, A.S. Saleh, H.Y. Fan, Phys. Rev. 182, 790 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    G. Dresselhaus, A.F. Kip, C. Kittel, Phys. Rev. 98, 368 (1955)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Luttinger, Phys. Rev. 102, 1030 (1956)ADSCrossRefGoogle Scholar
  5. 5.
    R.N. Dexter, H.J. Zeiger, B. Lax, Phys. Rev. 104, 637 (1956)ADSCrossRefGoogle Scholar
  6. 6.
    P. Warmenbol, F.M. Peeters, J.T. Devreese, Phys. Rev. B 37, 4694 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    F.M. Peeters, J.T. Devreese, Semicond. Sci. Technol. 7, B15 (1992)CrossRefGoogle Scholar
  8. 8.
    M. Singh, B. Tanatar, Phys. Rev. B 41, 12781 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    B. Tanatar, M. Singh, Phys. Rev. B 42, 3077 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Bhat, S.S. Kubakaddi, B.G. Mulimani, J. Appl. Phys. 70, 2216 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Bhat, B.G. Mulimani, S.S. Kubakaddi, Phys. Rev. B 49, 16459 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    B.D. McCombe, S.G. Bishop, R. Kaplan, Phys. Rev. Lett. 18, 748 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    S. Morita, S. Takano, H. Kawamura, J. Phys. Soc. Jpn. 39, 1040 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Nano Lett. 13, 2436 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    L.A. Padilha, J. Fu, D.J. Hagan, E.W. Van Stryland, C.L. Cesar, L.C. Barbosa, C.H.B. Cruz, D. Buso, A. Martucci, Phys. Rev. B 75, 075325 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    G. Nagamine, J.O. Rocha, L.G. Bonato, A.F. Nogueira, Z. Zaharieva, A.A.R. Watt, C.H. de Brito Cruz, L.A. Padilha, J. Phys. Chem. Lett 9, 3478 (2018)CrossRefGoogle Scholar
  17. 17.
    G. Nootz, L.A. Padilha, P.D. Olszak, S. Webster, D.J. Hagan, E.W. Van Stryland, L. Levina, V. Sukhovatkin, L. Brzozowski, E.H. Sargent, Nano Lett. 10, 3577 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    L.A. Padilha, G. Nootz, P.D. Olszak, S. Webster, D.J. Hagan, E.W. Van Stryland, L. Levina, V. Sukhovatkin, L. Brzozowski, E.H. Sargent, Nano Lett. 11, 1227 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H.V. Phuc, D.Q. Khoa, N.V. Hieu, N.N. Hieu, Optik 127, 10519 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    L.V. Tung, P.T. Vinh, H.V. Phuc, Phys. B 539, 117 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    K.D. Pham, N.N. Hieu, L.T.T. Phuong, B.D. Hoi, C.V. Nguyen, H.V. Phuc, Appl. Phys. A 124, 656 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    H.V. Phuc, N.N. Hieu, Opt. Commun. 344, 12 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)ADSCrossRefGoogle Scholar
  24. 24.
    N. Rosen, P.M. Morse, Phys. Rev. 42, 210 (1932)ADSCrossRefGoogle Scholar
  25. 25.
    H. Yıldırım, M. Tomak, Phys. Rev. B 72, 115340 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    H. Yıldırım, M. Tomak, Phys. Status Solidi B 243, 4057 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    H. Yildirim, M. Tomak, J. Appl. Phys. 99, 093103 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    G. Wang, Q. Guo, L. Wu, X. Yang, Phys. Rev. B 75, 205337 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Zúñiga, M. Alacid, A. Requena, A. Bastida, Int. J. Quantum Chem. 57, 43 (1996)CrossRefGoogle Scholar
  30. 30.
    S.H. Dong, R. Lemus, Int. J. Quantum Chem. 86, 265 (2002)CrossRefGoogle Scholar
  31. 31.
    S.H. Dong, A. Gonzalez-Cisneros, Ann. Phys. 323, 1136 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    V.U. Unal, E. Aksahin, O. Aytekin, Phys. E 47, 103 (2013)CrossRefGoogle Scholar
  33. 33.
    Z.H. Zhang, C. Liu, K.X. Guo, Optik 127, 1590 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    P. Shea, B.P. van Zyl, R.K. Bhaduri, Am. J. Phys 77, 511 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    P. Goswami, B. Deb, Phys. Scr. 91, 085401 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    S. Adachi, J. Appl. Phys. 58, R1 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    S. Flügge, Practical Quantum Mechanics (Springer, Berlin, 1971)zbMATHGoogle Scholar
  38. 38.
    S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)Google Scholar
  39. 39.
    C.V. Nguyen, N.N. Hieu, N.A. Poklonski, V.V. Ilyasov, L. Dinh, T.C. Phong, L.V. Tung, H.V. Phuc, Phys. Rev. B 96, 125411 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    K. Seeger, Semiconductor Physics: An Introduction, vol. 40 (Springer, Berlin, 1985)zbMATHGoogle Scholar
  41. 41.
    W. Xu, R.A. Lewis, P.M. Koenraad, C.J.G.M. Langerak, J. Phys. Condens. Matter 16, 89 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    W. Xu, Phys. Rev. B 57, 12939 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    P. Vasilopoulos, Phys. Rev. B 33, 8587 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    M.P. Chaubey, C.M. Van Vliet, Phys. Rev. B 33, 5617 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    E. Li, Phys. E 5, 215 (2000)CrossRefGoogle Scholar
  46. 46.
    F. Ungan, U. Yesilgul, S. Sakiroglu, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Opt. Commun. 309, 158 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    K.D. Pham, L. Dinh, P.T. Vinh, C.A. Duque, H.V. Phuc, C.V. Nguyen, Superlattices Microstruct. 120, 738 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    H. Sari, E. Kasapoglu, S. Sakiroglu, U. Yesilgul, F. Ungan, I. Sökmen, Phys. E 90, 214 (2017)CrossRefGoogle Scholar
  49. 49.
    B.D. Hoi, L.T.T. Phuong, T.C. Phong, J. Appl. Phys. 123, 094303 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Jiang, E.A. Henriksen, L.C. Tung, Y.J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Phys. Rev. Lett. 98, 197403 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    D.A.B. Miller, D.S. Chemla, D.J. Eilenberger, P.W. Smith, A.C. Gossard, W.T. Tsang, Appl. Phys. Lett. 41, 679 (1982)ADSCrossRefGoogle Scholar
  52. 52.
    D. Gammon, S. Rudin, T.L. Reinecke, D.S. Katzer, C.S. Kyono, Phys. Rev. B 51, 16785 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Applied Physics, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Physics DepartmentUniversity of Education, Hue UniversityHueVietnam
  4. 4.Department of Materials Science and EngineeringLe Quy Don Technical UniversityHanoiVietnam
  5. 5.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  6. 6.Division of Theoretical PhysicsDong Thap UniversityCao LanhVietnam

Personalised recommendations