Applied Physics A

, 125:131 | Cite as

Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure

  • Qian Zhou
  • Xiaowei YinEmail author
  • Fang Ye
  • Ran Mo
  • Zhiming Tang
  • Xiaomeng Fan
  • Laifei Cheng
  • Litong Zhang


With the aim to design broadband microwave absorbers with optically transparent, flexible and stable performances in 8–18 GHz, a sandwich structure is designed and fabricated by sandwiching the periodic arrayed ITO film into two transparent and flexible polyvinyl chloride layers. With the induced metamaterial structure to tailor the effective input impedance, the proposed sandwich absorber can realize more than 90% absorption in 8–18 GHz for both TE and TM polarization when the incident angle is less than 30°. Meanwhile, the optical transmittance of the designed absorber reaches more than 80% transmittance with the wavelength larger than 532 nm, and the average optical transmittance for the visible light (400–800 nm) is 80.2%. The proposed absorber shows broadband microwave absorption in both X and Ku band with simultaneously high transmittance in visible frequencies, indicating that the proposed sandwich metamaterial absorber has great potentials for developing optical transparent absorbing devices.


Microwave absorber Optically transparent Metamaterial Flexible 



This work was financially supported by the National Natural Science Foundation of China [grant numbers 51725205, 51602258, 51521061 and 51332004] and the 111 project [grant number B08040].


  1. 1.
    F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    X.W. Yin, L. Kong, L.T. Zhang, L.F. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59, 326–355 (2014)Google Scholar
  3. 3.
    D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70, 400–409 (2010)CrossRefGoogle Scholar
  4. 4.
    W.Y. Duan, X.W. Yin, Q. Li, X.M. Liu, L.F. Cheng, L.T. Zhang, J. Eur. Ceram. Soc. 34, 257–266 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Carbon 111, 94–102 (2017)CrossRefGoogle Scholar
  6. 6.
    Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L.F. Cheng, L.T. Zhang, Mater. Design 123, 46–53 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Bensafieddine, F. Djerfaf, F. Chouireb, D. Vincent, Appl. Phys. A Mater. Sci. Process. 123, 248 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    M.R.I. Faruque, M.J. Hossain, S.S. Islam, M.F. Bin, M.T. Jamlos, Islam, Appl. Phys. A Mater. Sci. Process. 123, 310 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    L. Wang, C.D. Hu, X.X. Wu, Z.Z. Xia, W.J. Wen, Appl. Phys. A Mater. Sci. Process. 123, 651 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    T. Shaw, D. Mitra, Appl. Phys. A Mater. Sci. Process. 124, 348 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, A. D’Orazio, Opt. Express 24, 22788–22795 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    K. Takizawa, O. Hashimoto, IEEE Trans. Microwave Theory Tech. 47, 1137–1141 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Okano, S. Ogino, K. Ishikawa, IEEE Trans. Microwave Theory Tech. 60, 2456–2464 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    H. Kurihara, Y. Hirai, K. Takizawa, T. Iwata, O. Hashimoto, IEICE Trans. Electron. E88c, 2350–2357 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, J.P. Duan, B.Z. Zhang, W.D. Zhang, W.J. Wang, J. Alloy. Compd. 705, 262–268 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Yu, J. Wang, J. Wang, H. Ma, H. Du, Z. Xu, S. Qu, J. Appl. Phys. 119, 134104 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    L. Du, X. Du, L. Zhang, Q. An, W. Ma, H. Ran, H. Du, J. Eur. Ceram. Soc. 38, 2767–2773 (2018)CrossRefGoogle Scholar
  18. 18.
    T. Jang, H. Youn, Y.J. Shin, L.J. Guo, ACS Photonics 1, 279–284 (2014)CrossRefGoogle Scholar
  19. 19.
    C. Zhang, Q. Cheng, J. Yang, J. Zhao, T.J. Cui, Appl. Phys. Lett. 110, 143511 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    D.W. Hu, J. Cao, W. Li, C. Zhang, T.L. Wu, Q.F. Li, Z.H. Chen, Y.L. Wang, J.G. Guan, Adv. Opt. Mater. 5, 1700109 (2017)CrossRefGoogle Scholar
  21. 21.
    W.W. Li, H. Jin, Z.H. Zeng, L.P. Zhang, H. Zhang, Z. Zhang, Carbon 121, 544–551 (2017)CrossRefGoogle Scholar
  22. 22.
    L.L. Wang, H.F. Zhang, X.K. Kong, B.R. Bian, 2016 progress in electromagnetics research symposium (Piers), pp. 1919–1922 (2016)Google Scholar
  23. 23.
    S.F. Lai, Y.H. Wu, J.J. Wang, W. Wu, W.H. Gu, Opt. Mater. Express 8, 1585–1592 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, J. Appl. Phys. 122, 105105 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C.Y. Chen, M.X. Jing, Z.C. Pi, S.W. Zhu, X.Q. Shen, Nanoscale Res. Lett. 10, 315 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Mallakpour, M. Javadpour, Polym. Compos. 38, 1800–1809 (2017)CrossRefGoogle Scholar
  27. 27.
    K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Sci. Technol. 66, 576–584 (2006)CrossRefGoogle Scholar
  28. 28.
    T. Wang, P. Wang, Y. Wang, L. Qiao, Mater. Design 95, 486–489 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. Zhou, X.W. Yin, F. Ye, R. Mo, X.F. Liu, X.M. Fan, L.F. Cheng, L.T. Zhang, J. Am. Ceram. Soc. 101, 5552–5563 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Liu, H. Cheng, H. Tian, Mater. Sci. Eng. B 179, 17–24 (2014)CrossRefGoogle Scholar
  31. 31.
    F. Costa, A. Monorchio, G. Manara, 2009 IEEE antennas and propagation society international symposium and USNC/URSI national radio science meeting, pp. 781–784 (2009)Google Scholar
  32. 32.
    K. Chen, L. Cui, Y.J. Feng, J.M. Zhao, T. Jiang, B. Zhu, Opt. Express 25, 5571–5579 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    K.M. Gupta, N. Gupta, Optical Properties of Materials, and Materials for Opto-Electronic Devices (Wiley, New York, 2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qian Zhou
    • 1
  • Xiaowei Yin
    • 1
    Email author
  • Fang Ye
    • 1
  • Ran Mo
    • 1
  • Zhiming Tang
    • 1
  • Xiaomeng Fan
    • 1
  • Laifei Cheng
    • 1
  • Litong Zhang
    • 1
  1. 1.Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations