Applied Physics A

, 125:154 | Cite as

Comparing magnitudes of surface energy stress in synchronous and asynchronous bending/buckling analysis of slanting double-layer METE nanoplates

  • Morteza KarimiEmail author
  • Ali Reza Shahidi


This article explores the magnitudes of surface energy stress in the synchronous and asynchronous bending/buckling analyses of skew double-layer magneto-electro-thermo-elastic (DLMETE) nanoplates, focusing on the effects of such main parameters as external electric potential, external magnetic potential, elastic foundations, skew angle, and temperature change on the rate of surface energy stress in the synchronous and asynchronous bending/buckling behaviors of skew DLMETE nanoplates. The two nanoplates examined are coupled via an elastic medium, termed van der Waals forces, while they are surrounded by Winkler and Pasternak foundations. Moreover, the two nanoplates are assumed to move in the same direction in the asynchronous mode but in opposite directions in the synchronous one. The refined plate, surface energy, and nonlocal hypotheses are manipulated to expand the governing equations, while the principle of virtual work is exploited to derive the relevant equilibrium equations. The equations thus obtained are solved using the Galerkin method and further validated via the Navier’s method. It is observed that the effects of surface energy stress on the different parameters of synchronous and asynchronous buckling behaviors of DLMETE nanoplates are radically different from those on their bending behavior.


  1. 1.
    C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    G.X. Liu, P.H. Ci, S.X. Dong, Energy harvesting from ambient low-frequency magnetic field using magnetomechano-electric composite cantilever. Appl. Phys. Lett. 104, 032908 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    K. Prashanthi, P.M. Shaibani, A. Sohrabi, T.S. Natarajan, T. Thundat, Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires. Phys. Status Solidi-Rapid Res. Lett. 6, 244–246 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    H. Zheng, J. Wang, S.E. Lofland et al., Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys.: Condens. Matter. 20, 434220 (2008)Google Scholar
  7. 7.
    S. Shetty, V.R. Palkar, R. Pinto, A. Pramana, Size effect study in magnetoelectric BiFeO3 system. J. Phys. Condens. Matter. 58, 1027–1030 (2002)Google Scholar
  8. 8.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefGoogle Scholar
  10. 10.
    M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323, (1975)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)CrossRefGoogle Scholar
  12. 12.
    A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    M. Karimi, A.R. Shahidi, ‘Finite difference method for sixth order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories’. Int. J. Nano Dimens. 6, 525–538 (2015)Google Scholar
  14. 14.
    M.H. Ghayesh, A. Farajpour, Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. Int. J. Eng. Sci. 129, 84–95 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Karimi, H.A. Haddad, A.R. Shahidi, Combining surface effects and non-local two variable refined plate theories on the shear/biaxial buckling and vibration of silver nanoplates. Micro Nano Lett. 10, 276–281 (2015)CrossRefGoogle Scholar
  16. 16.
    M.H. Ghayesh, A. Farajpour, Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects. Mech. Adv. Mater. Struct. (2018). CrossRefzbMATHGoogle Scholar
  17. 17.
    M. Karimi, M.H. Shokrani, A.R. Shahidi, Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method. J. Appl. Comput. Mech. 1, 122–133 (2015)Google Scholar
  18. 18.
    A. Farajpour, A. Rastgoo, M.R. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics. Compos. Struct. 180, 179–191 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Farajpour, A. Rastgoo, Size-dependent static stability of magneto-electro-elastic CNT/MT-based composite nanoshells under external electric and magnetic fields. Microsyst. Technol. 23, 5815–5832 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Karimi, H.R. Mirdamadi, A.R. Shahidi, Positive and negative surface effects on the buckling and vibration of rectangular nanoplates under biaxial and shear in-plane loadings based on nonlocal elasticity theory. J. Braz. Soc. Mech. Sci. Eng. 39, 1391–1404 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Farajpour, A. Rastgoo, M. Mohammadi, Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Phys. B Condens. Matter 509, 100–114 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Ö Civalek, A.K. Baltacıoğlu, Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method. Compos. Struct. 203, 458–465 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Karimi, A.R. Shahidi, ‘Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method’. Appl. Phys. A 124, 681 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Ö Civalek, C. Demir, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)MathSciNetGoogle Scholar
  25. 25.
    M. Aydogdu, U. Gul, Buckling analysis of double nanofibers embeded in an elastic medium using doublet mechanics theory. Compos. Struct. (2018). CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Karimi, A.R. Shahidi, S. Ziaei-Rad, Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro-mechanical loadings. Microsyst. Technol. 23, 4903–4915 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Aydogdu, M. Arda, Forced vibration of nanorods using nonlocal elasticity. Adv. Nano Res. 4, 265–279 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Rahmati, S. Khodaei, ‘Nonlocal vibration and instability analysis of carbon nanotubes conveying fluid considering the influences of nanoflow and non-uniform velocity profile. Microfluid. Nanofluid. 22, 117 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Sobhy, Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory. Struct. Eng. Mech. 63, 401–415 (2017)Google Scholar
  30. 30.
    M. Sobhy, A.F. Radwan, A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates. Int. J. Appl. Mech. 9, 1750008 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Karimi, A.R. Shahidi, A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto-electro-thermo-elastic nanoplate. Appl. Phys. A (2018). CrossRefGoogle Scholar
  32. 32.
    D.Z. Karličić, S. Ayed, E. Flaieh, Nonlocal axial vibration of the multiple Bishop nanorod system. Math. Mech. Solids (2018). CrossRefGoogle Scholar
  33. 33.
    D. Karličić, P. Kozić, R. Pavlović, N. Nešić, Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic medium under the influence of the axially harmonic load. Compos. Struct. 162, 227–243 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Karličić, D. Jovanović, P. Kozić, M. Cajić, Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium. J. Mech. Mater. Struct. 10, 43–62 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Ebrahimi, M.R. Barati, Investigating physical field effects on the size-dependent dynamic behavior of inhomogeneous nanoscale plates. Eur. Phys. J. Plus 132, 88 (2017)CrossRefGoogle Scholar
  36. 36.
    E. Khanmirza, A. Jamalpoor, A. Kiani, Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate. Eur. Phys. J. Plus 132, 422 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Amiri, R. Talebitooti, L. Li, Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory. Eur. Phys. J. Plus 133, 252 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Karimi, A.R. Shahidi, Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 231, 111–130 (2017)Google Scholar
  39. 39.
    F. Abdollahi, A. Ghassemi, Surface and nonlocal effects on coupled in-plane shear buckling and vibration of single-layered graphene sheets resting on elastic media and thermal environments using DQM. J. Mech. (2018). CrossRefGoogle Scholar
  40. 40.
    M. Karimi, A.R. Shahidi, Finite difference method for biaxial and uniaxial buckling of rectangular silver nanoplates resting on elastic foundations in thermal environments based on surface stress and nonlocal elasticity theories. J. Solid Mech. 8, 719–733 (2016)Google Scholar
  41. 41.
    F. Ebrahimi, M.R. Barati, Static stability analysis of embedded flexoelectric nanoplates considering surface effects. Appl. Phys. A 123, 666 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    M. Karimi, A.R. Shahidi, Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings. Appl. Phys. A 123, 304 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    X.J. Xu, Z.C. Deng, K. Zhang, J.M. Meng, Surface effects on the bending, buckling and free vibration analysis of magneto-electro-elastic beams. Acta Mech. 227, 1557–1573 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Karimi, H.R. Mirdamadi, A.R. Shahidi, Shear vibrationand buckling of double-layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects. Microsyst. Technol. 23, 765–797 (2017)CrossRefGoogle Scholar
  45. 45.
    M.H. Ghayesh, H. Farokhi, A. Gholipour, Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams. Int. J. Mech. Sci. 122, 370–383 (2017)CrossRefGoogle Scholar
  46. 46.
    M.H. Shokrani, M. Karimi, M.S. Tehrani, H.R. Mirdamadi, Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local two-variable refined plate theory using the GDQ method. J. Braz. Soc. Mech. Sci. Eng. 38, 2589–2606 (2016)CrossRefGoogle Scholar
  47. 47.
    M. Sobhy, Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces. Compos. Struct.
  48. 48.
    A. Jamalpoor, A. Ahmadi-Savadkoohi, M. Hosseini, S.H. Hosseini-Hashemi, Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco-Pasternak medium via nonlocal elasticity theory. Eur. J. Mech. A/Solids 63, 84–98 (2017)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Chen, J. Guo, E. Pan, Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. J. Sound Vib. 400, 550–563 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    B. Shahriari, S. Shirvani, Small-scale effects on the buckling of skew nanoplates based on non-local elasticity and second-order strain gradient theory. J. Mech. (2017). CrossRefGoogle Scholar
  51. 51.
    G.C. Tsiatas, A.J. Yiotis, Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. 226, 1267–1281 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    S.R. Alavi, M. Rahmati, S. Ziaei-Rad, A new approach to design safe-supported HDD against random excitation by using optimization of rubbers spatial parameters. Microsyst. Technol. 23, 2023–2032 (2017)CrossRefGoogle Scholar
  53. 53.
    M. Rahmati, S.R. Alavi, S. Ziaei-Rad, Improving the read/write performance of hard disk drives under external excitation sources based on multi-objective optimization. Microsyst. Technol. 23, 3331–3345 (2017)CrossRefGoogle Scholar
  54. 54.
    S.R. Alavi, M. Rahmati, S. Ziaei-Rad, Optimization of passive control performance for different hard disk drives subjected to shock excitation. J. Central South Univ. 24, 891–899 (2017)CrossRefGoogle Scholar
  55. 55.
    M. Rahmati, S.R. Alavi, M.R. Tavakoli, Investigation of heat transfer in mechanical draft wet cooling towers using infrared thermal images: an experimental study. Int. J. Refrig. 88, 229–238 (2018)CrossRefGoogle Scholar
  56. 56.
    M. Rahmati, S.R. Alavi, M.R. Tavakoli, Experimental investigation on performance enhancement of forced draft wet cooling towers with special emphasis on the role of stage numbers. Energy Convers. Manag. 126, 971–981 (2016)CrossRefGoogle Scholar
  57. 57.
    H. Babaei, A.R. Shahidi, Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method. Arch. Appl. Mech. 81, 1051–1062 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations