Advertisement

Applied Physics A

, 125:132 | Cite as

Effect of V and Y doping on the structural, optical and electronic properties of CdS (hexagonal and cubic phases)

  • Zein K. Heiba
  • Mohamed Bakr MohamedEmail author
  • Nasser Y. Mostafa
Article
  • 30 Downloads

Abstract

Nano Cd1−xYxS and Cd1−xVxS (0 ≤ x ≤ 0.2) systems were synthesized by a thermolysis method. X-ray phase analysis indicated the presence of two phases, cubic and hexagonal structures, for some samples. The effect of doping on the cell parameters, Cd-tetrahedron dimension, crystallite size and the mixed phases’ percentages in the sample were examined applying X-ray Rietveld method. The energy gap of Y- or V-doped CdS was determined by ultraviolet spectroscopy technique. It is found out that the energy gap of V-doped CdS is less than the corresponding Y-doped CdS samples. Density function calculation (DFT) was used to confirm the decreasing in energy gap upon doping, and also to study the changes in absorption and dielectric properties of doped and undoped CdS samples in both cubic and hexagonal phases. The photoluminescence measurements revealed the presence of extra sub emissions spectra (yellow and green) upon doping CdS with Y or V compared with undoped CdS sample.

Notes

Acknowledgements

The authors thank MCX beamline stuff for helping with the SR-XRPD experiments which were conducted at the MCX beamline of Elettra Synchrotron, Trieste, Italy.

References

  1. 1.
    Z.K. Heiba, L. Arda, M.B. Mohamed, J. Magn. Magn. Mater. 389, 153 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Z.K. Heiba, M.B. Mohamed, N.G. Imam, N.Y. Mostafa, Colloid. Polym. Sci. 294(2), 357 (2016)CrossRefGoogle Scholar
  3. 3.
    Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mol. Struct. 1136, 329 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Z.K. Heiba, M.B. Mohamed, A.M. Wahba, N.G. Imam, J. Electron. Mater. 47(1), 711 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Ramaiah, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, A.K. Bhatnagar, Mater. Chem. Phys. 68, 22 (2001)CrossRefGoogle Scholar
  6. 6.
    M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, J.Q.M. Almarashi, J. Mol. Struct. 1155, 666 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    A. Nabi, Z. Akhtar, T. Iqbal, A. Ali, M.A. Javid, J. Semicond. 38, 073001 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    A.H. Mueller, M.A. Petruska, M. Achermann, D. Werder, E. Akhadov, D. Koleske, M. Hoffbauer, V.I. Klimov, Nano Lett. 5(6), 1039 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Morales, O.Z. Angel, G.T. Delgado, Appl. Surf. Sci. 175, 562 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    R. Banerjee, R. Jayakrishnan, P. Ayyub, J. Phys. Condens. Matter 12(50), 10647 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 43, 91 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    K. Okamoto, T. Yoshimi, S. Miura, Appl. Phys. Lett. 53, 678 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    K.Deka, M.P.C.Kalita, J. Alloys Compd. 757, 209 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Murtaza, S.M.A. Osama, M. Hassan, N.R.K. Watoo, Appl Phys A Mater Sci Process 124, 778 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, J. Alloys Compd. 513, 118 (2012)CrossRefGoogle Scholar
  16. 16.
    A.K. Bilal Ahmed, S. Ojha, Kumar, Spectrochim Acta A Mol. Biomol. Spectrosc. 179, 144 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    M. Jayaraj, C. Vallabhan, J Electrochem Soc 138, 1512 (1991)CrossRefGoogle Scholar
  18. 18.
    K. Singh, S. Kumar, N.K. Verma, H.S. Bhatti, J. Nanopart. Res. 11, 1017 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Appl. Phys. Lett. 83, 2 (2003)CrossRefGoogle Scholar
  20. 20.
    P.S. Chowdhury, A. Patra, Phys. Chem. Chem. Phys. 8, 1329 (2006)CrossRefGoogle Scholar
  21. 21.
    P. Wang, R. Zhao, Z. Li, T. Yang, M. Zhang, Cryst. Eng. Comm. 18, 2607 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Lutterotti, Maud 2.33, http://www.ing.unitn.it/~maud/
  23. 23.
    J. Tauc, in The Optical properties of solid, ed. by A. Abeles (North Holland, Amsterdam, 1972), p. 277Google Scholar
  24. 24.
    J. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B Condens. Matter 46, 6671 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. Cryst. Mater. 220(5–6), 567 (2005)Google Scholar
  26. 26.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys.Rev.Lett 77, 3865 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloys Compd. 618, 280–286 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Saravanan, R. Jayavel, A. Pandurangan, J.-H. Liu, H.-Y. Miao, Mater. Res. Bull. 52, 128 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Hwang, Y. Um, J. Korean Phys. Soc. 65, 1691 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Hossain, R. Islam, K.A. Khan, Proc. Photon. North 2007 6796, 67961O (2007)CrossRefGoogle Scholar
  32. 32.
    H.A. Khawal, N.D. Raskar, U.P. Gawai, B.N. Dole, AIP Conf. Proc. 1728, 020431 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Kanagasbapathy, S. Vetrivel, R. Rajasekaran, Optoelectron. Adv. Mater. 10(9–10), 720 (2016)Google Scholar
  34. 34.
    H. Ehrenreich, M.L. Cohen, Phys. Rev. 115, 786 (1959)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Wooten, Optical Properties of Solids (Academic, New York, 1972)Google Scholar
  36. 36.
    D.R. Penn, Phys. Rev. 128 (1962)2093Google Scholar
  37. 37.
    Z.K. Heiba, M.B. Mohamed, M.H.A. Kader, J. Electron. Mater. 47(5), 2945 (2018)Google Scholar
  38. 38.
    R. Morales, O. Angel, G.T. Delgado, Appl. Surf. Sci. 175, 562 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P. Kumar, P. Neelanjeneallu, K.N. Harish, M.C. Prabhakara, J. Nanotechnol. 2014, 1 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Sahi, B.K. Pandey, R.K. Swarnkar, R. Gopal, Appl. Surf. Sci. 257, 9846 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    V.L. Gayou, B.S. Hernández, M.R. López, C. ZúñigaIslas, J.A. Ascencio, J. Nano Res. 9, 139 (2010)CrossRefGoogle Scholar
  42. 42.
    A.I. Inamdar, S. Cho, Y. Jo, J. Kim, J. Han, H. Woo, R.S. Kalubarme, C.J. Park, H. Kim, S.M. Pawar, H. Im, Mater. Lett. 163, 126 (2016)CrossRefGoogle Scholar
  43. 43.
    P.M. Aneesh, M.K. Jayaraj, Bull. Mater. Sci. 33, 227 (2010)CrossRefGoogle Scholar
  44. 44.
    T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Mater. Sci. Eng. B 162, 179 (2009)CrossRefGoogle Scholar
  45. 45.
    J. Goldstein, M. Ohmer, S.M. Hegde, Y.F. Chen, J. Electr. Mater. 32, 783 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    W. Joerger, M. Laasch, T. Kunz, M. Fiederle, J. Meinhardt, K.W. Benz, K. Scholz, W. Wendl, G. Müller-vogt, Cryst. Res. Technol. 32, 1103 (1997)CrossRefGoogle Scholar
  47. 47.
    I. Radevici, N. Nedeoglo, K. Sushkevich, H. Huhtinen, D. Nedeoglo, P. Paturi, Phys. B 503, 11 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    H. Li, W. Jie, J. Cryst. Growth 257, 110 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    M. Souissi, Z. Chine, A. Bchetnia, H. Touati, B. El Jani, Microelectron. J. 37, 1 (2006)CrossRefGoogle Scholar
  50. 50.
    G. Li, S.J. Chua, S.J. Xu, W. Wang, P. Li, B. Beaumont, P. Gibart, Appl. Phys. Lett. 74, 1114 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zein K. Heiba
    • 2
  • Mohamed Bakr Mohamed
    • 1
    • 2
    Email author
  • Nasser Y. Mostafa
    • 3
  1. 1.Department of Physics, Faculty of ScienceTaibah UniversityAl‑Madinah Al‑MunawaraSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  3. 3.Chemistry Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations