Advertisement

Applied Physics A

, 125:137 | Cite as

Influence of thermal treatment on the structural and optical properties of methoxy-substituted 2, 4-diphenyl quinoline

  • Deepshikha Painuly
  • S. Y. Mullemwar
  • M. E. Rabanal
  • R. SinghalEmail author
  • I. M. NagpureEmail author
Article
  • 19 Downloads

Abstract

Herein, we report blue-emitting methoxy-substituted 2, 4-diphenyl quinoline phosphor prepared using acid-catalyzed Friedländer reaction along with the enhancement in the phase purity due to employed thermal treatment in Ar atmosphere. Improvement in the phase purity of the phosphor leading to a change in their optical properties is reported. XRD and FTIR analyses confirm the formation and improvement in the phase purity of the phosphor. TG/DTA analysis endorses the change in their behavior and thermal stability. The modification in optical band gap of the phosphors due to thermal treatment has been confirmed from the UV–vis spectroscopy. Enhancement in the fluorescence intensity of blue-emitting phosphor due to thermal treatment has been described through photoluminescence analysis. Luminescence decay profile has also been recorded using time-correlated single-photon counting (TCSPC) system for the lifetime analysis of the phosphors which supports the obtained PL analysis. The overall study indicates that methoxy-substituted 2, 4-diphenyl quinoline phosphor which was annealed at 90 °C in Ar atmosphere serves better fluorescence intensity, thermal stability and lifetime profile, and may be utilized for the organic display applications.

Notes

Acknowledgements

The authors are thankful to DST (SERB) (Sanction Project Ref. No. SB/FTP/PS–006/2014, dt. 17/03/2015) for financial assistance and NIT Uttarakhand for constant encouragement. The authors are also thankful to the MRC laboratory, MNIT Jaipur for UV–vis absorption and PL measurements. These studies are also supported by the Community of Madrid under the Geomaterials–2 Programme Multimat Challenge S2013/MIT–2862 and MAT2016–808875–C3-3-R.

References

  1. 1.
    A. Köhler, H. Bassler, Triplet states in organic semi-conductors. Mater. Sci. Eng. R 66, 71–109 (2009)CrossRefGoogle Scholar
  2. 2.
    O. Bolton, K. Lee, H.J. Kim, K.Y. Lin, J. Kim, Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem. 3(5), 205–210 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Painuly, N.K. Mogha, D.T. Masram, R. Singhal, R.S. Gedam, I.M. Nagpure, Phase stability and transformation of the α to ε-phase of Alq3 phosphor after thermal treatment and their photo-physical properties. J. Phys. Chem. Solids 121, 396–408 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    D. Painuly, N.K. Mogha, R. Singhal, P. Kandwal, D.T. Masram, M.E. Rabanal, I.M. Nagpure, The modification in the photo-physical properties via transformation of synthetic dihydrated Znq2 to anhydrous (Znq2)4 tetramer by sublimation process. Opt. Mater. 82, 175–189 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    D. Painuly, D.T. Masram, M.E. Rabanal, I.M. Nagpure, The effect of ethanol on structural, morphological and optical properties of Li(I) 8-hydroxyquinoline phosphor. J. Lumin. 192, 1180–1190 (2017)CrossRefGoogle Scholar
  6. 6.
    I.M. Nagpure, M.M. Duvenhage, S.S. Pitale, O.M. Ntwaeaborwa, J.J. Terblans, H.C. Swart, Synthesis, thermal and spectroscopic characterization of Caq2 (calcium 8-hydroxyquinoline) organic phosphor. J. Fluoresc. 22(5), 1271–1279 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Svensson, F. Zhang, S.C. Veenstra, W.J.H. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, M.R. Andersson, High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 15, 988–991 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Huang, Q. Liu, J.H. Zou, X.H. Zhu, A.Y. Li, J.W. Li, S. Wu, J. Peng, Y. Cao, R. Xia, D.D.C. Bradley, J. Roncali, Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole. Adv. Funct. Mater. 19(18), 2978–2986 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Adachi. T. Tsutsui. S. Saito, Blue light-emitting organic electroluminescent devices. Appl. Phys. Lett. 56(9), 799–801 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    A. Köhler, J.S. Wilson, R.H. Friend, Fluorescence and phosphorescence in organic materials. Adv. Mater. 14, 701–707 (2002)CrossRefGoogle Scholar
  12. 12.
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    X. Zhang, S.A. Jenekhe, Electroluminescence of multicomponent conjugated polymers, roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules 33, 2069–2082 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    F. Hide, C.Y. Yang, A.J. Heeger, Polymer diodes with a blend of h4EH–PPV and conjugated polyquinoline. Synth. Metals. 85, 1355–1356 (1997)CrossRefGoogle Scholar
  15. 15.
    J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim, C.Y. Kim, S.I. Hong, New polyquinoline copolymers: synthesis, optical, luminescent, and hole-blocking/electron-transporting properties. Macromolecules 33, 5880–5885 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    C.J. Tonzola, M.M. Alam, S.A. Jenekhe, A new synthetic route to soluble polyquinolines with tunable photophysical, redox, and electroluminescent properties. Macromolecules 38(23), 9539–9547 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    W. Wrasidlo, J.K. Stille, Glass transition of polyquinoline. Macromolecules 9(3), 505–511 (1976)Google Scholar
  18. 18.
    V. Kumar, M. Gohain, J.H.V. Tonder, S. Ponra, B.C.B. Bezuindenhoudt, O.M. Ntwaeaborwa, H.C. Swart, Synthesis of quinoline based heterocyclic compounds for blue lighting application. Opt. Mater. 50, 275–281 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Jain, S.J. Surana, Synthesis and evaluation of antipsychotic activity of 11-(40-(N-aryl carboxamido/N-aryl-a-phenylacetamido)-piperazinyl)-dibenz[b,f][1,4]-oxazepine derivatives. Arab. J. Chem. 10, S2032–S2039 (2017)CrossRefGoogle Scholar
  20. 20.
    N.D. Shashikumar, G. Krishnamurthy, H.S. Bhojyanaik, M.R. Lokesh, K.S. Jithendrakumara, Synthesis of new biphenyl-substituted quinoline derivatives, preliminary screening and docking studies. J. Chem. Sci. 126, 205–212 (2014)CrossRefGoogle Scholar
  21. 21.
    B.M. Bahirwar, D.H. Gahane, R.G. Atram, S.V. Moharil, Optical spectroscopic studies on methoxy substituted 2-4, diphenyl quinoline derivatives dispersed in polystyrene matrix. Phys. Proced. 29, 50–54 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Lu, S.A. Jenekhe, Poly(vinyl diphenylquinoline): a new pH-tunable light-emitting and charge-transport polymer synthesized by a simple modification of polystyrene. Macromolecules 34(18), 6249–6254 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    B.M. Bahirwar, R.G. Atram, R.B. Pode, S.V. Moharil, Tunable blue photoluminescence from methoxy substituted diphenyl quinoline. Mater. Chem. Phys. 106, 364–368 (2007)CrossRefGoogle Scholar
  24. 24.
    S.M. Sawde, R.R. Patil, S.V. Moharil, A simple method for preparing novel green emitting Al-tris(8- hydroxyquinoline) complex and blue-green emitting Mg-tris(8- hydroxyquinoline) complex, IJLA 7(1), 309–312 (2017)Google Scholar
  25. 25.
    H.H. Liu, S.H. Lin, N.T. Yu, Resonance Raman enhancement of phenyl ring vibrational modes in phenyl iron complex of myoglobin. Biophys. J. 57(4), 851–856 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    N. Khaorapapong, M. Ogawa, In situ formation of bis(8-hydroxyquinoline) zinc(II) complex in the interlayer spaces of smectites by solid–solid reactions. J. Phys. Chem. Sol. 69, 941 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    J.G. Mahakhode, S.J. Dhoble, C.P. Joshi, S.V. Moharil, Blue-shifted photoluminescence of Alq3 dispersed in PMMA. Bull. Mater. Sci. 34(7), 1649–1651 (2011)CrossRefGoogle Scholar
  28. 28.
    T. Lee, M.S. Lin, Sublimation point depression of tris(8-hydroxyquinoline) aluminum (III) (Alq3) by crystal engineering. Cryst. Growth Des. 7, 1803–1810 (2007)CrossRefGoogle Scholar
  29. 29.
    S.S.S. Abuthahir, A.J.A. Nasser, S. Rajendran, G. Brindha, Synthesis, spectral studies and antibacterial activities of 8-hydroxyquinoline derivative and its metal complexes. Chem. Sci. Trans. 3, 303–313 (2014)Google Scholar
  30. 30.
    M.M. Duvenhage, H.G. Visser, O.M. Ntwaeaborwa, H.C. Swart, The effect of electron donating and withdrawing groups on the morphology and optical properties of Alq3,. Phys. B. 439, 46–49 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J.C.S. .Costa, R.J.S. .Taveira, F.R.A. Carlose, A. Medes, S. Adelio, M.N.B.F. Luis, Optical band gaps of organic semiconductor materials. Opt. Mater. 58, 51–60 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966)CrossRefGoogle Scholar
  33. 33.
    S. Moita, T. Akashi, A. Fujii, M. Yoshida, Y. Ohmori, K. Yoshimoto, T. Kawai, A.A. Zakhidro, S.B. Lee, K. Yoshino, Unique electrical and optical characteristic in poly (p-phenylen)-C60 system. Synth. Met. 69, 433–434 (1995)CrossRefGoogle Scholar
  34. 34.
    C.H. Chen, J. Shi, Metal chelates as emitting materials for organic electroluminescence. Coord. Chem. Rev. 171, 161–174 (1998)CrossRefGoogle Scholar
  35. 35.
    L.C. Palilis, J.S. Melinger, M.A. Wolak, Z.H. Kafafi, Excitation energy transfer in tris(8-hydroxyquinolinato) aluminum doped with a pentacene derivative. J. Phys. Chem. B. 109, 5456–5463 (2005)CrossRefGoogle Scholar
  36. 36.
    K. Singh, A. Kumar, R. Srivastava, P.S. Kadyan, M.N. Kamalasanan, I. Singh, Synthesis and characterization of 5,7-dimethyl-8-hydroxyquinoline and 2-(2-pyridyl) benzimidazole complexes of zinc(II) for optoelectronic application. Opt. Mater. 34, 221–227 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Sciences and HumanitiesNational Institute of TechnologyUttarakhandIndia
  2. 2.Department of PhysicsRTM Nagpur UniversityNagpurIndia
  3. 3.Materials Science and Engineering and Chemical Engineering Department and IAABUniversidad Carlos III De MadridMadridSpain
  4. 4.Department of Physics and Materials Research CentreMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations