Advertisement

Applied Physics A

, 125:171 | Cite as

Dielectric and piezoelectric properties of PbTi 0.8−xSe0.2SmxO3 nanoceramics prepared by high energy ball milling

  • Sanjay Kumar SinhaEmail author
  • Sona Kumari
  • Rama Kant Chaudhary
Article
  • 15 Downloads

Abstract

Incorporation of Se and Sm were done based on the stoichiometric formula PbTi0.8−xSe0.2SmxO3 (PTSeS). TG characterization of green powder revealed the completion of solid state reaction at temperature 450 °C. XRD of modified PTSeS powders milled for 10 h was found most suitable as it gives pure single phase tetragonal structure. Dielectric constant was found as 2700 at curie temperature of 470 °C in the case of 5 wt percent of Sm in PTSeS. Piezoelectric coefficient was found as 230 × 10 − 12 C/N at 35 Kv/cm of poling field. The results obtained were comparable and even better than so far reported in similar kind of materials.

Notes

Acknowledgements

The authors would like to thank Dr.Ravi, NML, Jamshedpur, Sanjaya Kumar Swain, CIF, BIT Mesra, S.K.S.Parasar, KIITS University for assistance in performing and analysis of various tests. Prompt help rendered by VC, BIT Mesra and Director, BIT Patna by giving permission for use of facilities is thankfully acknowledged.

References

  1. 1.
    J.D.S. Guerra. C.R. Hathenher, S.A. Lourenço, N.O. Dantas, Investigation of the physical properties of new PZT modified tellurium oxide(TeO2–B2O3–PbO2: TBP) glasses. J. Non-Cryst. Solids 356, 2350 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    B. Jaffe, R.S. Roth, S.J. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Appl. Phys. 25(6), 809 (1954)CrossRefGoogle Scholar
  3. 3.
    R.E. Newnham, R.R. Gregory, Electromechanical properties of smart materials. J. Intell. Mater. Syst. Struct. 4, 289 (1993)CrossRefGoogle Scholar
  4. 4.
    C. Tao, Z. Zhiyong, L. Ruihong, D. Xianlin, Grain size effect on piezoelectric properties of Sr2Nb2O7 ceramics. J. Adv. Dielectr. 8(4), 1820003 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Sahu, B. Behera, Investigation on structural, dielectric and ferroelectric properties of samarium-substituted BiFeO3–PbTiO3 composites. J. Adv. Dielectr. 7(1), 1750001 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    K.P. Tiwary, S.K. Sinha, S.A.N. Khan, L.S.S. Singh, M.N. Husain, Z.H. Zaidi, Effect of ECR plasma exposure on the optical properties of Se80Te20-x Pbx thin films. Chalcogenide Lett. 5(12), 309 (2008)Google Scholar
  7. 7.
    S. Kumari, S.K. Sinha, R.K. Chaudhary, Preparation and characterization of Ca2+ modified PbTi03 ceramics by HEBM technique. Mater. Today Proc. 4, 5715 (2017)CrossRefGoogle Scholar
  8. 8.
    S.K.S. Parasar, R.N.P. Choudhary, B.S. Murty, Ferroelectric phase transition in Pb0.92Gd0.08 (Zr0.53 Ti0.47)0.98O3 nanoceramic synthesized by high-energy ball milling. J. Appl. Phys. 94,6091–6096Google Scholar
  9. 9.
    B.S. Murty, S. Ranganathan, Novel material synthesis by mechanical alloying /milling. Mater. Rev. 43(3), 101 (1998)CrossRefGoogle Scholar
  10. 10.
    C. Suryanarayana, Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 184 (1998)Google Scholar
  11. 11.
    B.A. Cid, S.D.S. Diego, A.A.D.A. Thiago, R.P.K. Luciana, M.D.S. Davinson, Enhanced optical properties of germanate and tellurite glasses containing metal or semiconductor nanoparticles. Sci. World J. 385193, 1 (2013)Google Scholar
  12. 12.
    V.A. Chaudhari, G.K. Bichile, Synthesis structural and structural properties of pure lead titanate ceramics. Smart Mater. Res. 147524, 1 (2013)Google Scholar
  13. 13.
    E. Erdem, P. Jakes, S.K.S. Parashar, K. Kiraz, M. Somer, A. Rüdiger, R.A. Eichel, Defect structure in aliovalently-doped and isovalently-substituted PbTiO3 nano-powders. J. Phys. Condensed Matter 22(34), 345 (2010)CrossRefGoogle Scholar
  14. 14.
    A.G. Zembilgotov, N.A. Pertsev, R. Waser, Phase states of nanocrystallite ferroelectric ceramics and their dielectric properties. J. Appl. Phys. 97, 114315 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A.E. Hachmia, B. Manoun, Y. Tamraoui, F. Mirinioui, R. Abkar, M.A.E. Amrani, I. Saadoune, M. Sajieddine, P. Lazor, Temperature induced structural phase transition in Sr3-xCaxFe2TeO9 (0 ≤ x ≤ 1) probed by Raman and Mossbauer techniques. J. Mol. Struct. 1141, 484 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    X. Luo, J. Zenga, X. Shia, L. Zhenga, K. Zhaoa, Z. Mana, G. Lia, (2018) Dielectric, ferroelectric and piezoelectric properties of MnO2-doped Pb (Yb1/2Nb1/2) O3-Pb (Zr, Ti) O3 ceramics. Ceram. Int. 44, 8456CrossRefGoogle Scholar
  17. 17.
    V. Koval, C. Alemany, J. Briancin, H. Brunckova, Dielectric properties and phase transition behavior of xPMN-(1-x)PZT ceramic systems. J. Electroceram. 10, 19 (2003)CrossRefGoogle Scholar
  18. 18.
    R.R. Ragini, S.K. Mishra, D. Pandey, Room temperature structure of Pb(ZrxTi1-x)O3 around the morphotropic phase boundary region: a rietveld study. Appl. Phys. 92, 3266 (2002)CrossRefGoogle Scholar
  19. 19.
    P. Kour, S.K. Pradhan, P. Kumar, S.K. Sinha, M. Kar, Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics. Appl. Phys. A. 122, 591 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M. Khalid, M. Shoaib, A.A. Khan, Strontium doped lead zirconate titanate ceramics: study of calcinations and sintering process to improve piezo effect. J. NanoSci. Nanotechnol. 11, 5440 (2011)CrossRefGoogle Scholar
  21. 21.
    S.R. Shannigrahi, F.E.H. Tay, K. Yao, R.N.P. Choudhary, Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the micro structural and electrical properties of sol–gel grown PZT ceramic. J. Eur. Ceram. Soc. 24, 163 (2004)CrossRefGoogle Scholar
  22. 22.
    P. Kour, P. kumar, S.K. Sinha, M. Kar, Study of dielectric and impedance spectroscopy of La substituted nanocrysrtalline Pb(Zr0.52Ti0.48)O3 ceramics. J. Mater. Sci. Mater. Electron. 26, 1304 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Sahoo, P.K. Panda, Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT. J. Adv. Ceram. 2(1), 37 (2013)CrossRefGoogle Scholar
  24. 24.
    S.R. Shannigarhi, R.N.P. Choudhary, H.N. Acharya, X-ray, SEM and dielectric studies of Gd-modified solgel prepared lead zirconate-lead titanate solid solution. Mater. Lett. 39, 318 (1999)CrossRefGoogle Scholar
  25. 25.
    S.K. Pandey, O.P. Thakur, D.K. Bhattacharya, H. Prakash, C. Chatterjee, Integr. Ferroelectr. 12(1), 65 (2010)CrossRefGoogle Scholar
  26. 26.
    P. Kour, S.K. Sinha, Dielectric, ferroelectric and piezoelectric properties of lanthanum substituted PZT ceramics. Digest J. Nanomater. Biostruct. 7(3), 1327 (2012)Google Scholar
  27. 27.
    K.C. Singh, C. Jiten, Lead-free piezoelectric ceramics manufactured from tantalum-substituted potassium sodium niobate nanopowders. Mater. Lett. 65, 85 (2011)CrossRefGoogle Scholar
  28. 28.
    P. Kour, S.K. Pradhan, P. Kumar, S.K. Sinha, M. Kar, Effect of Nd doping on dielectric and impedance properties of PZT nanoceramics. J. Electron. Mater. 47(5), 2861 (2018)Google Scholar
  29. 29.
    Z.P. Yang, Effects of composition on phase structure, microstructure and electrical properties of (K0:5Na0:5ÞNbO3–LiSbO3 ceramics. J. Mater. Sci. Eng. A 432, 292 (2006)CrossRefGoogle Scholar
  30. 30.
    P. Kour, S.K. Pradhan, P. Kumar, S.K. Sinha, M. Kar, Effect of Sr doping on electrical properties of lead zirconate titanate nanoceramics. Ferroellectrics 517, 104 (2017)CrossRefGoogle Scholar
  31. 31.
    P. Kour, P. Kumar, S.K. Sinha, M. Kar, Study of dielectric and impedance spectroscopy of La substituted nanocrystalline Pb(Zr0.52Ti0.48)O3 ceramics. J. Mater. Sci. Mater. Electr. 26, 1304 (2014)CrossRefGoogle Scholar
  32. 32.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  33. 33.
    S. Saha, T.P. Sinha, Low-temperature scaling behavior of BaFe0.5Nb0.5O3. Phys. Rev. B 65, 134103 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    P. Kour, P. Kumar, S.K. Sinha, M. Kar, Effect of strontium substitution on dielectric constants of PZT nanocrystalline ceramics. AIP Conf. Proc. AIP Conf. Proc. 1536, 667 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Kim, S.J. Jeong, J.S. Song, Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0:5K0:5ÞNbO3–0.05LiTaO3 ceramics. J. Am. Ceram. Soc. 90, 3338 (2007)CrossRefGoogle Scholar
  36. 36.
    P. Kour, P. Kumar, S.K. Sinha, M. Kar, Electrical properties of calcium modified PZT (52/48) ceramics, solid state communications. Solid State Commun. 190: 33 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Z.P. Gao, H.P. Ning, C. Chen, R. Wilson, M.J. Reece, The effect of barium substitution on the ferroelectric properties of Sr2Nb2O7 ceramics. J. Am. Ceram. Soc. 96, 1163 (2013)CrossRefGoogle Scholar
  38. 38.
    S.K. Sinha, P. Kour, A.K. Sinha, P.K. Barhai, Nickel doped PZT ceramics by a spray dried-PVA assisted method. J. Ceram. Process. Res. 12(1), 93 (2011)Google Scholar
  39. 39.
    P. Muralt, Piezoelectrics in micro and nanosystems: solutions for a wide range of applications. J. Nanosci. Nanotechnol. 8, 2560 (2008)CrossRefGoogle Scholar
  40. 40.
    S.K. Sinha, S. Yadav, P.M. Raole, Sol–gel followed by urea–acetone spherodization for preparation of lithium titanate ceramics pebbles and preliminary characterization. Fusion Eng. Design 113, 146 (2016)CrossRefGoogle Scholar
  41. 41.
    R.S. Nasar, M. Cerqueira, E. Longo, J.A. Varela, A. Beltran, Experimental and theoretical study of the ferroelectric and piezoelectric behaviour of strontium-doped PZT. J. Eur. Ceram. Soc. 22, 209 (2002)CrossRefGoogle Scholar
  42. 42.
    P. Kour, S.K. Sinha, Studies of Sr2+ ion substitution on ferroelectric and piezoelectric properties of PZT nanocrystalline. Ceraˆmica 59, 34 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Kumar, R.K. Sinha, S. Yadav, S.K. Sinha, (2017) Preparation of Ca modified Li2TiO3 ceramics pebbles and its activation energy calculation, Int. J. Mater. Eng. Innov. 8(¾), 273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBirla Institute of Technology, MesreaPatnaIndia
  2. 2.Department of PhysicsNational Institute of TechnologyJamshedpurIndia

Personalised recommendations