Applied Physics A

, 125:144 | Cite as

Effects of annealing on the thermoelectric properties of nanocrystalline Bi1.2Sb0.8Te3 thin films prepared by thermal evaporation

  • Sukhdeep Singh
  • Janpreet Singh
  • Jyoti Kaushal
  • S. K. TripathiEmail author


Nanocrystalline films of thermoelectric compound Bi1.2Sb0.8Te3 were deposited on the glass substrates at room temperature, under a vacuum of ~ 2 × 10− 5 mbar by thermal evaporation. These films were annealed in vacuum of 2 × 10− 5 mbar at 120 °C, 150 °C and 180 °C. The analysis of XRD profile revealed that as-deposited film was made up of very fine crystallites of size of ~ 14 nm. Raman spectra of as-deposited, 150 °C and 180 °C annealed films were analyzed to study the changes in the atomic bonding which indicated a variation of microstructure. This fact was supported by the emergence of diffraction lines corresponding to (110) and (00l) direction in XRD profile of the film annealed at 180 °C. FESEM analysis of the As-deposited and annealed films was conducted. It was found that the film formed consisted of nanosized clusters(lumps) along with pores between them. Magnified view depicted that each cluster was made up smaller crystallites that were packed together in a non-uniform fashion. The results obtained from XRD and FESEM prove that the films were nanocrystalline. Lattice parameters (c and a) were determined and overall c/a ratio was found to increase with annealing that indicated increase unit cell volume. This complied well with reduced defects, resulting strains and also indicated the change of crystal orientations in the film. Increase in the value of seebeck coefficient, by a factor of 6, was observed for film annealed at 180 °C (BST-180). This resulted in the 19 times increase in power factor of BST-180 as compared to as-deposited film.



This work is financially supported by DST-PURSE, New Delhi grant. Authors are thankful to Dr Vasant Sathe, UGC-DAE Consortium, Indore, India for doing the Raman measurements on these samples. Sukhdeep Singh is thankful to Department of Science and Technology (DST) for providing PURSE grant.


  1. 1.
    C. Gyaner, K.K. Kar, Prog. Mater. Sci. 83, 330 (2016)CrossRefGoogle Scholar
  2. 2.
    J.-C. Zheng, Front. Phys. China 3(3), 269 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Lu, H. Zhang, C. Mao, C.M. Li, Appl. Energ. 164, 57 (2016)CrossRefGoogle Scholar
  4. 4.
    V. Leonov, T. Torfs, P. Fiorini, C.V. Hoof, IEEE Sens. J. 7(5), 650 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    R. Chein, G. Huang, Appl. Therm. Eng. 24, 2207 (2004)CrossRefGoogle Scholar
  6. 6.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    O. Yamashita, S. Tomiyoshi, K. Makita, J. Appl. Phys. 93, 368 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, M. Nino, Appl. Phys. Lett. 90, 012101–012102 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, T.M. Tritt, Nano Lett. 10, 3283 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Appl. Phys. A 80, 1567 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen, J. Cryst. Growth 265, 558 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    M. Takashiri, S. Tanaka, K. Miyazaki, H. Tsukamoto, J. Alloy. Compd. 490, L44 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Vankatasubramaniun, E. Sivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    R. Sathyamorrthy, J. Dheepa, J. Phys. Chem. Solids 68, 111 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    E.I. Rogacheva, A.V. Budnik, M.V. Dobrotvorskaya, A.G. Fedrov, S.I. Krivongov, P.V. Mateychenko, O.N. Nashchekina, A.Y. Sipatov, Thin Solid Films 612, 128 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, H. Ksukamoto, J. Appl. Phys. 101, 074301–074301 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    C. Sudarshan, S. Jayakumar, K. Vaideki, C. Sudakar, Thin Solid Films 629, 28 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    H. Zou, D.M. Rowe, G. Min, J. Cryst. Growth 222, 82 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    P.H. Le, C.-N. Liao, C.W. Luo, J. Leu, J. Alloy. Compd. 615, 546 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Golia, M. Arora, R.K. Sharma, A.C. Rastogi, Curr. Appl. Phys. 3, 195 (2003)CrossRefGoogle Scholar
  21. 21.
    Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, X. Zhao, NPG Asia Mater. 8, 1 (2016)Google Scholar
  22. 22.
    M. Takashiri, S. Tanaka, K. Miyazaki, Thin Solid Films 519, 619 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    S. Morikawa, Y. Satake, M. Takashiri, Vacuum 148, 296 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    D.-H. Kim, E. Byon, G.-H. Lee, S. Cho, Thin Solid Films 510, 148 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Hosokawa, K. Wada, M. Tanaka, K. Tomita, M. Takashiri, Jpn. J. Appl. Phys. 57, 02CC02–01 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Takashiri, S. Tanaka, H. Hagino, K. Miyazaki, Int. J. Heat Mass Tran. 76, 376 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 1401 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Liu, M. Zhou, J. He, Scripta Mater. 111, 39 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, H. Tsukamoto, J. Appl. Phys. 104, 084301–084302 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    W. Zhu, Y. Deng, Y. Wang, B. Luo, L. Cao, Thin Solid Films 556, 270 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    B.E. Warren, X-ray Diffraction (Addison-Wesley Publishing Co, London, 1969), p. 18Google Scholar
  32. 32.
    K.L. Chopra, Thin Film Phenomenon (McGraw-Hill, New York, 1969), p. 270Google Scholar
  33. 33.
    S.O. Kasap, Principles of Electronic Materials and Devices, 3 ed (Tata McGraw-Hill, New Delhi, 2007), p. 68Google Scholar
  34. 34.
    Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S.Y. Quek, Q. Xiong, Phys. Rev. B 90, 245428 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    K.M.F. Shahil, M.Z. Hossain, V. Goyal, A.A. Balandin, J. Appl. Phys. 111, 054305 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Liang, W. Wang, B. Zheng, G. Zhang, J. Huang, J. Li, T. Li, Y. Song, X. Zhang, J. Alloy. Compd. 509, 5147 (2011)CrossRefGoogle Scholar
  37. 37.
    C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, Q. Xue, Nano Res. 6(9), 688 (2013)CrossRefGoogle Scholar
  38. 38.
    Z. Yu, X. Wang, Y. Du, S. Aminorroaya-Yamini, C. Zhang, K. Chuang, S. Li, J. Cryst. Growth 362, 247 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    X. Qi, W. Ma, X. Zhang, C. Zhang, Appl. Surf. Sci. 457, 41 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. Ponnusamy, H. Ikeda, T. Takeuchi, C. Muthamizhchelvan, Y. Hayakawa, Appl. Surf. Sci. 418, 246 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Du, G. Qiu, Y. Wang, M. Si, X. Xu, W. Wu, P.D. Ye, Nano Lett. 17, 3965 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    A.S. Pine, G. Dresselhaus, Phys. Rev. B 4(2), 356 (1971)ADSCrossRefGoogle Scholar
  43. 43.
    M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, C. Adachi, Appl. Phys. Lett. 98, 023114 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Zhang, Y. Wang, Y. Deng, Y. Xu, Solid State Commun. 151, 1520 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sukhdeep Singh
    • 1
  • Janpreet Singh
    • 1
  • Jyoti Kaushal
    • 2
  • S. K. Tripathi
    • 1
    • 2
    Email author
  1. 1.Department of PhysicsPanjab UniversityChandigarhIndia
  2. 2.Centre for Nanoscience and Nanotechnology (UIEAST)Panjab UniversityChandigarhIndia

Personalised recommendations