Advertisement

Applied Physics A

, 125:125 | Cite as

Fabrication and impedance spectroscopy of lead free magneto-electric compound: Bi(Ca0.25Ti0.25Fe0.5)O3

  • Varsa PurohitEmail author
  • R. N. P. Choudhary
Article
  • 34 Downloads

Abstract

Bismuth calcium ferric titanate Bi(Ca0.25Ti0.25Fe0.5)O3 compound is synthesized via solid state reaction route. Using different experimental procedures, the specimen has been characterized. Investigation regarding crystal system with the help of X-ray diffraction (XRD) data suggests the rhombohedral system. Detailed investigations of dielectric and electrical properties of Bi(Ca0.25Ti 0.25Fe0.5)O3 in a broad frequency (1 kHz–1 MHz) and temperature (25–500 °C) ranges have offered a variety of exciting outcomes of conduction mechanism, structure and correlation properties, etc. A significant role of interface in obtaining good dielectric compound has been noticed. The existence of polarization (PE) hysteresis loop indicates the existence of ferroelectricity in the material. The existences of Maxwell–Wagner dielectric relaxation and space charge polarization at low frequencies and high temperatures in the material have been realized. The Nyquist graphs confer the temperature-dependent assistance of grain and grain boundary effect. The transport properties and ac conductivity of the material, which are affected by the temperature and frequency of the applied electric field, have been studied. It exhibits semiconductor behavior. The magneto-electric coupling coefficient of the examined specimen is found to be 3.8 mV cm− 1Oe− 1 at zero magnetic field.

References

  1. 1.
    M. Gajek, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert et al., Nat. Mater. 6, 296–302 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M. Bibes, A. Barthélémy,Nat. Mater. 7, 425–426 (2008)CrossRefGoogle Scholar
  3. 3.
    J.F. Scott, Nat. Mater. 6, 256–257 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    G. Anjum, S. Mullah, D.K. Shukla, R. Kumar, Mater. Lett., 64, 2003–2005 (2010)CrossRefGoogle Scholar
  5. 5.
    G.A. Smolenskii, I.E. Chupis, V Sov. Phys. Usp. 25, 475 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    A. Lahmar, S. Habouti, M. Dietze, C.H. Solterbeck, M. Es-Souni, Appl. Phys. Lett. 94, 012903 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    R. Jyoshna Rout, P.R. Padhee, Das, R.N.P. Choudhary, Adv. Appl. Phys. 1, 105–116 (2013)CrossRefGoogle Scholar
  8. 8.
    A.F. Popkov, M.D. Davydova, K.A. Zvezdin, S.V. Solov’yov, A. K. Zvezdin, Phys. Rev. B 9, 93 (2016)Google Scholar
  9. 9.
    X. Chen, H. Zhang, K. Ruan, W. Shi, J. Alloy. Compd. 529, 108 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Mazhar, H. Shah, S. Riaz, S. Atiq, S. Naseem, Mater. Today Proc. 2, 5736–5742 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, Q. Jiang, H. He, C.W. Nan, Appl. Phys. Lett. 88, 142503 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    R. Varsa Purohit, R.N.P. Padhee, Choudhary, Ceram. Int. 44, 3993–3999 (2017)CrossRefGoogle Scholar
  15. 15.
    E. Wu, POWDMULT: an interactive powder diffraction data interpretation and indexing program version 2.1, School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, AustraliaGoogle Scholar
  16. 16.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 13, 5397–5405 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 6673 (2017)Google Scholar
  18. 18.
    B.N. Parida, P.R. Das, J. Alloy. Compd. 585, 234–223 (2014)CrossRefGoogle Scholar
  19. 19.
    N. Kumar, A. Ghosh, R.N.P. Choudhary, Mater. Chem. Phys. 30, 381–386 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Peláiz-Barranco, J.D.S. Guerra, R. López-Noda, E.B. Araújo. J. Phys. D Appl. Phys. 41, 215503 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, J. Phys. D Appl. Phys. 43, 445003 (2010)CrossRefGoogle Scholar
  22. 22.
    Hana, Naceur, A. Megriche, M. El Maaoui. Orient. J. Chem. 29, 937–944 (2013)CrossRefGoogle Scholar
  23. 23.
    H. Birey, Dielectric properties of aluminum oxide films, J. Appl. Phy. 49, 2898 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188–201 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, Chap. 4 (Wiley, New York, 1987)Google Scholar
  27. 27.
    J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)CrossRefGoogle Scholar
  28. 28.
    R.N.P. Truptimayee Acharya, Choudhary, Mater. Chem. Phys. 17, 131–139 (2016)CrossRefGoogle Scholar
  29. 29.
    P.W. Anderson, Fizika dielektrikov, Akad (Nauk, USSR, Moscow, 1959)Google Scholar
  30. 30.
    Akad, Nauk, (1959)Google Scholar
  31. 31.
    K. Dev, A. Mahato, T.P. Dutta, Sinha, J. Mater. Sci. 45, 6757–6762 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    B.N. Parida, PiyushR. Das, R. Padhee, R.N.P. Choudhary. J. Phys. Chem. Solids 73, 713–719 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Ceram. Int. 39, 5695–5704 (2013)CrossRefGoogle Scholar
  34. 34.
    B.N. Samita Pattanayak, P.R. Parida, R.N.P. Das, Choudhary, Appl. Phys. A 112, 387–395 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, J. Phys. D Appl. Phys. 42, 065413 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    J.H. Park, J.S. Bae, B.C. Choi, J.H. Jeong, J. Phys. D: Appl. Phys. 40, 579 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)CrossRefGoogle Scholar
  38. 38.
    T. Badapanda, V. Senthil, S.K. Rout, S. Panigrahi, T.P. Sinha, Mater. Chem. Phys. 133, 863–870 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallée, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D:Appl. Phys. 46, 065308 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301 (1999)CrossRefGoogle Scholar
  41. 41.
    R. Macdonald, Note on the parameterization of the constant phase admittance element. Solid State Ionics 13, 147–149 (1984)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Halder, K. Parida, S.N. Dasa, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, Dielectric and impedance properties of Bi(Zn2/3 V1/3)O3electronic material. Phys. Lett. A 382, 716–722 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    W. Zhong, D. Vanderbilt, Phys. Rev. Lett. 74, 2587 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    F.A. Abdel-wahab, H.M. Maksoud, M.F. Kotkata, J. Phys. D: Appl. Phys. 39, 190–195 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)ADSCrossRefGoogle Scholar
  46. 46.
    E. Veena Gopalan, K.A. Malini, S. Sagar, D.Sakthi Kumar, Y. Yoshida, I.A. Al-Omari, M.R. Anantharaman, J. Phys. D Appl. Phys. 42, 165005 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    A. Ghosh, S. Bhattacharya, D.P. Bhattacharya, A. Ghosh, Frequency dependent conductivity of cadmium vanadate glassy semiconductor. J. Phys. Condens. Matter. 20, 035203 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    K. Parida, S.K. Dehury, R.N.P. Choudhary, Phys. Lett. A 380, 4083–4091 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    M. Ram, J. Alloy. Compd. 509, 1744–1748 (2011)CrossRefGoogle Scholar
  50. 50.
    Y. Zhanga, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Ceram. Int. 40, 5853 (2014)CrossRefGoogle Scholar
  51. 51.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaram, Mater. Sci. 21, 251 (1998)Google Scholar
  52. 52.
    K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 11211–11219 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Multifunctional Materials Research Laboratory, Department of PhysicsSiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations