Advertisement

Applied Physics A

, 125:123 | Cite as

Structure, microhardness and thermal conducting properties of the high-pressure high-temperature-treated Al–Ti–N materials

  • V. S. KudyakovaEmail author
  • A. V. Chukin
  • M. V. Dorokhin
  • Yu. M. Kuznetsov
  • R. A. Shishkin
  • A. R. Beketov
Article
  • 31 Downloads

Abstract

The w-AlN → rs-AlN polymorphic transition in Ti–Al–N system with low TiN content (3 mol %) was observed. The experimental data show that this transition is possible under 12 GPa pressure at 1773 K. The formation of rs-AlN phase in the resulting composite materials was confirmed by XRD. The obtained materials have intermediate physical and mechanical properties as compared to the undoped w-AlN and TixAl1−xN solid solution. They are found to have high Vickers hardness (31 GPa at a load of 50 g)—which is twice as hard as w-AlN. The thermal conductivity of the rs-AlN-containing Al–Ti–N materials was measured for the first time using the frequency separation (3ω) method and gave high thermal conductivity coefficients up to 100 W/m × K.

Notes

Acknowledgements

The authors would like to thank Dr. V.P. Filonenko of Institute for High Pressure Physics and Russian Academy of Sciences for HPHT-treated samples. The reported study was funded by RFBR according to the research project no. 18-33-01136.

References

  1. 1.
    J.R. Grandusky, R.V. Randive, T.C. Jordan, L.J. Schowalter, in III-Nitride Ultraviolet Emitters, ed. by M. Kneiss, J. Rass (Springer, Cham, 2016), p. 442Google Scholar
  2. 2.
    Y. Bian, M. Liu, G. Ke, Y. Chen, J. DiBattista, E. Chan, Y. Yang, Surf. Coat. Technol. (2015).  https://doi.org/10.1016/j.surfcoat.2014.11.060 CrossRefGoogle Scholar
  3. 3.
    D. Liu, S.J. Cho, J. Park, J. Gong, J.-H. Seo, R. Dalmau, D. Zhao, K. Kim, M. Kim, A.R.K. Kalapala, J.D. Albrecht, W. Zhou, B. Moody, Z. Ma, Appl. Phys. Lett. (2018).  https://doi.org/10.1063/1.5038044 CrossRefGoogle Scholar
  4. 4.
    S. Subramani, M. Devarajan, IEEE Trans. Electron Devices (2016).  https://doi.org/10.1109/TED.2016.2620519 CrossRefGoogle Scholar
  5. 5.
    A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, S.A. Barnett, Phys. Rev. Lett. (1997).  https://doi.org/10.1103/PhysRevLett.78.1743 CrossRefGoogle Scholar
  6. 6.
    Z. Li, S. Yadav, Y. Chen, N. Li, X.-Y. Liu, J. Wang, S. Zhang, J.K. Baldwin, A. Misra, N. Mara, Mater. Res. Lett. (2017).  https://doi.org/10.1080/21663831.2017.1303793 CrossRefGoogle Scholar
  7. 7.
    V.S. Kudyakova, R.A. Shishkin, A.A. Elagin, M.V. Baranov, A.R. Beketov, J. Eur. Ceram. Soc. (2017).  https://doi.org/10.1016/j.jeurceramsoc.2016.11.051 CrossRefGoogle Scholar
  8. 8.
    A. Siegel, K. Parlinski, U. Wdowik, Phys. Rev. B (2006).  https://doi.org/10.1103/PhysRevB.74.104116 CrossRefGoogle Scholar
  9. 9.
    M.R. Schwarz, M. Antlauf, S. Schmerler, K. Keller, T. Schlothauer, J. Kortus, G. Heide, E. Kroke, High Press. Res. (2014).  https://doi.org/10.1080/08957959.2013.857020 CrossRefGoogle Scholar
  10. 10.
    V.V. Bannikov, V.S. Kudyakova, A.A. Elagin, M.V. Baranov, A.R. Beketov, J. Struct. Chem. (2016).  https://doi.org/10.1134/S0022476616080072 CrossRefGoogle Scholar
  11. 11.
    N. Norrby, H. Lind, G. Parakhonskiy, M.P. Johansson, F. Tasnádi, L.S. Dubrovinsky, N. Dubrovinskaia, I.a. Abrikosov, M. Odén, J. Appl. Phys. (2013).  https://doi.org/10.1063/1.4790800 CrossRefGoogle Scholar
  12. 12.
    B. Alling, A.V. Ruban, A. Karimi, O.E. Peil, S.I. Simak, L. Hultman, I.A. Abrikosov, Phys. Rev. B Condens. Matter Mater. Phys. (2007).  https://doi.org/10.1103/PhysRevB.75.045123 CrossRefGoogle Scholar
  13. 13.
    B. Alling, T. Marten, I.A. Abrikosov, A. Karimi, J. Appl. Phys. (2007).  https://doi.org/10.1063/1.2773625 CrossRefGoogle Scholar
  14. 14.
  15. 15.
    V.V. Bannikov, A.R. Beketov, M.V. Baranov, A.A. Elagin, V.S. Kudyakova, R.A. Shishkin, Phys. Solid State. (2016).  https://doi.org/10.1134/S106378341605005X CrossRefGoogle Scholar
  16. 16.
    L.G. Khvostantsev, L.F. Vereshchagin, A.P. Novikov, High Temp. High Press. (1977).  https://doi.org/10.1080/0895795041233129876 CrossRefGoogle Scholar
  17. 17.
    ASTM E384-17: Standard test method for knoop and vickers hardness of materialsGoogle Scholar
  18. 18.
    D.G. Cahill, Rev. Sci. Instrum. (1990).  https://doi.org/10.1063/1.1141498 CrossRefGoogle Scholar
  19. 19.
    C.-K. Liu, C.-K. Yu, H.-C. Chien, S.-L. Kuo, C.-Y. Hsu, M.-J. Dai, G.-L. Luo, S.-C. Huang, M.-J. Huang, J. Appl. Phys. (2008).  https://doi.org/10.1063/1.3032602 CrossRefGoogle Scholar
  20. 20.
    M.V. Shaleev, A.V. Novikov, D.V. Yurasov, J.M. Hartmann, O.A. Kuznetsov, D.N. Lobanov, Z.F. Krasilniket, Semiconductors. (2013).  https://doi.org/10.1134/S106378261303024X CrossRefGoogle Scholar
  21. 21.
    H. Vollstadt, E. Ito, M. Akaishi, S. Akimoto, O. Fukunaga, Proc. Jpn. Acad. B. (1990).  https://doi.org/10.2183/pjab.66.7 CrossRefGoogle Scholar
  22. 22.
    A.E. Santana, A. Karimi, V.H. Derflinger, A. Schütze, Thin Solid Films. (2004).  https://doi.org/10.1016/j.tsf.2004.08.147 CrossRefGoogle Scholar
  23. 23.
    A. Höling, L. Hultman, M. Odén, J. Sjölén, L. Karlsson, Surf. Coat Technol. (2005).  https://doi.org/10.1016/j.surfcoat.2004.04.056 CrossRefGoogle Scholar
  24. 24.
    L. Chen, Y.X. Xu, Y. Du, Y. Liu, Thin Solid Films. (2015).  https://doi.org/10.1016/j.tsf.2015.09.029 CrossRefGoogle Scholar
  25. 25.
    L. Karlsson, L. Hultmanb, J.-E. Sundgrenb, Thin Solid Films. (2000).  https://doi.org/10.1016/S0040-6090(00)00996-2 CrossRefGoogle Scholar
  26. 26.
    J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, J. Phys. D Appl. Phys. (1997).  https://doi.org/10.1088/0022-3727/30/1/002 CrossRefGoogle Scholar
  27. 27.
    X. Du, M. Qin, A. Rauf, Z. Yuan, B. Yang, X. Qu, Mater.Sci. Eng. A (2008).  https://doi.org/10.1016/j.msea.2008.05.027 CrossRefGoogle Scholar
  28. 28.
    Q. Li, Z. Wang, C. Wu, Cheng, Xin, J. Alloy. Compd. (2015).  https://doi.org/10.1016/j.jallcom.2015.03.235 CrossRefGoogle Scholar
  29. 29.
    J.-X. Zhang, Z.-R. Huang, D.-L. Jiang, S.H. Tan, Z. Shen, M. Nygren, J. Am. Ceram. Soc. (2002).  https://doi.org/10.1111/j.1151-2916.2002.tb00234.x CrossRefGoogle Scholar
  30. 30.
    W. Kim, J.-S. Park, S.-W. Cho, N.-R. Kim, I.-Y. Ko, I.-J. Shon, Properties and rapid consolidation of binderless titanium nitride by pulsed current activated sintering. J. Ceram. Process. Res. 11, 627–630 (2010)Google Scholar
  31. 31.
    O.N. Grigor’ev, T.V. Mosina, N.P. Brodnikovskii, Refract. Ind. Ceram. (2001).  https://doi.org/10.1023/A:1014006327090 CrossRefGoogle Scholar
  32. 32.
    S. Kume, I. Yamada, K. Watari, I. Harada, K. Mitsuishi, J. Am. Ceram. Soc. (2009).  https://doi.org/10.1111/j.1551-2916.2008.02650.x CrossRefGoogle Scholar
  33. 33.
    J. Martan, P. Beneš, Thermochim. Acta (2012).  https://doi.org/10.1016/j.tca.2012.03.029 CrossRefGoogle Scholar
  34. 34.
    K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, K. Mori, J. Mater. Res. (2002).  https://doi.org/10.1557/JMR.2002.0426 CrossRefGoogle Scholar
  35. 35.
    G.P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990)Google Scholar
  36. 36.
    H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing (Noyes Publications, Westwood, 1996)Google Scholar
  37. 37.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Physical-Technical Research InstituteLobachevsky State University of Nizhni NovgorodNizhniy NovgorodRussia

Personalised recommendations