Applied Physics A

, 125:128 | Cite as

Structure and electrical conductivity of ɤ-irradiated lead–phosphate glass containing MoO3

  • N. A. Elalaily
  • A. H. Zahran
  • O. I. SallamEmail author
  • F. M. Ezz Eldin


Phosphate glasses doped with three different concentrations of MoO3 were prepared using quenching method. The effects of the added molybdenum ions on density, molar volume, specific volume, FTIR spectra and electrical conductivity were measured and discussed. It has been found that density decreased while molar volume and specific volume increased with the increase of Mo content. These data have been related to the lower molecular weight of Mo ions compared with the Pb ions which they replaced, and also to the increase of the free space. Electrical conductivity decreased with the low concentrations of Mo then followed by an increase of the highest content of Mo due to the assumption of combination of ionic conductivity from Na ions and electronic conductivity due to the presence of Mo ions in many valences (Mo3+,Mo4+, Mo5+, Mo6+). Also the effects of low and high γ radiation doses which caused minor changes on the FTIR spectra or electrical conductivity especially for glass containing 3% MoO3 were interpreted. The Eg was found in the range from 2.6 to 4.62 ev which is in the forbidden indirect transition.


  1. 1.
    L. Bih, S. Mohdachi, A. Nadiri, M. Mansouri, M. Amalhay, O. Mykajlo, D. Kayts, Optoelectron. Adv. Mat. Rapid Commun. 2, 253 (2008)Google Scholar
  2. 2.
    S.M. Salem, E.A. Mohamed, J. Non-Cryst. Solids 357, 1153 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    S.T. Reis, D.L. Faria, J.R. Martinelli, W.M. Pontuschka, D.E. Day, G.S.M. Partiti, J. Non-Cryst. Solids 304, 188 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    G.N. Greaves, in Glass science and technology, vol. 4, part B, ed. by D.R. Uhlmann, N.J. Kreidl (Elsevier, Amsterdam, 1990), p. 1Google Scholar
  5. 5.
    N.A. Elalaily, R.M. Mahamed, J. Nuclear Mater. 303, 44 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    H. Behzad, M.H. Hekmatshoar, M. Mirzayi, M. Azmoonfar, Ionics. 15, 647 (2009)CrossRefGoogle Scholar
  7. 7.
    N.A. Elalailya, M.I. Magda Khalilb, L.S. Ahmed, Phys. B 390, 236 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M. Rada, S. Rada, P. Pascuta, E. Culea, Spectrochim. Acta Part A. 77, 832 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D. Ehrt, J. Non-Cryst. Solids 348, 22 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Y.B. Saddeek, Phys. B. 406, 562 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    F.H. El Batal, S.M. Abo-Naf, S.Y. Marzouk, Philos. Mag. 91, 341 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    V. Dimitrov, Y. Dimitriev, J. Non-Cryst. Solids 122, 133 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    M.V.N. Padma Rao, L. Srinivasa Rao, M. Srinivasa Reddy, V. Ravi, Kumar, N. Veeraiah, Croat. Chem. Acta 82, 747 (2009)Google Scholar
  14. 14.
    M. Moutataouia, M. Lamire, M. Taibi, Matec Web Conf. 5, 04012 (2013), CrossRefGoogle Scholar
  15. 15.
    M. Celikbilek, A.E. Ersundu, S. Aydin, J. Am. Ceram. Soc. 96, 1470 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Abbas, L. Bih, A. Nadiri, Y. El Amraoui, D. Mezzane, B. Elouadi, J. Mol. Struct. 876, 194 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M.M. El-Desoky, J. Non-Cryst. Solids 351, 3139 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Saad, W. Stambouli, N. Sdiri, H. Elhouichet, Mater. Res. Bull. 89, 224 (2017)CrossRefGoogle Scholar
  19. 19.
    A.V. Ravi Kumar, Ch.S. Rao, G. Murali Krishna, V. Ravi Kumar, N. Veeraiah, J. Mol. Struct. 1016, 39 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    R. Berger, J. Kliava, P. Beziade, J. Non-Cryst. Solids 180, 151 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    A. Agarwal, S. Khasa, V.P. Seth, S. Sanghi, M. Arora, J. Mol. Struct. 1060, 182 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968)CrossRefGoogle Scholar
  23. 23.
    R.N. Sheibani, C.A. Hogarth, J. Mater. Sc. 26, 429 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    N.F. Mott, E.A. Davis, Electronic process in non-crystalline materials, 2nd edn. (Oxford University Press, Clarendon Press, New York, 1979)Google Scholar
  25. 25.
    K. Terashima, S.H. Kim, T. Yoko, J. Am. Ceram. Soc. 78, 1601 (1995)CrossRefGoogle Scholar
  26. 26.
    I. Kashif, S.A. Rahman, A.G. Mostafa, E.M. Ibrahim, A.M. Sanad, J. Alloys Compd. 450, 352 (2008)CrossRefGoogle Scholar
  27. 27.
    N. Mouhsine, L. Bih, N. Allali, A. Nadiri, A. Yacoubi, M. Hadded, M. Danot, Solid State Sci. 5, 669 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    G. Little Flower, G. Sahaya Baskaran, M. Srinivasa Reddy, N. Veeraiah, Phys. B 393, 61 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    F.H. El Batal, Nucl. Instrum. Methods Phys. Res. B265, 521 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    B. Sumalatha, I. Omkaram, T.R. Rao, C.L. Raju, J. Mol. Struct. 1006, 96 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Marzouk, H. ElBatal, W. Eisa, Indian J. Phys. 90, 781 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    D. Ehrt, P. Ebeling, Glass Technol. 44, 46 (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Elalaily
    • 1
  • A. H. Zahran
    • 1
  • O. I. Sallam
    • 1
    Email author
  • F. M. Ezz Eldin
    • 1
  1. 1.Radiation Chemistry DepartmentNational Center for Radiation Research and Technology, Atomic Energy AuthorityCairoEgypt

Personalised recommendations