Applied Physics A

, 125:124 | Cite as

A review on the numerical modeling of CdS/CZTS-based solar cells

  • Assiya HaddoutEmail author
  • Abderrahim Raidou
  • Mounir Fahoume


CZTS thin-film is now one of the most promising materials for the sustainable absorption of solar cells. Recently, there has been interest in enhancing efficiency and reducing costs of manufacturing CZTS-based solar cells. Nevertheless, there is no report focused on explaining the role of numerical modeling’s help to understand this cell. In this review, we discuss the advantages and the challenges of the experimental pure sulfide CZTS-based solar cells. The softwares used in simulations thin-films solar cells are discussed. The solutions for improving efficiency of CdS/CZTS-based solar cells using numerical modeling are also discussed.



The authors gratefully acknowledge anonymous reviewers for their scientific suggestions and constructive comments.


  1. 1.
    M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Jiang, X. Yan, Cu2ZnSnS4 thin film solar cells: present status and future prospects. In Solar CellsResearch and Application Perspectives, (InTech, UK, 2013)Google Scholar
  3. 3.
    H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors. Sol. Energy Mater. Sol. Cells 49(1), 407–414 (1997)CrossRefGoogle Scholar
  4. 4.
    H. Katagiri, N. Ishigaki, T. Ishida, K. Saito, Characterization of CuZnSnS thin films prepared by vapor phase sulfurization. Jpn. J. Appl. Phys. 40, 500–504 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    T. Tanaka et al., Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66(11), 1978–1981 (2005)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Zhang, L. Shao, Y. Fu, E. Xie, Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties. Rare Met. 25, 315–319 (2006)CrossRefGoogle Scholar
  7. 7.
    N. Kamoun, H. Bouzouita, B. Rezig, Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films 515(15), 5949–5952 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material, Phys. Status Solidi B 245(9), 1772–1778 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Precursors order effect on the properties of sulfurized Cu 2ZnSnS4 thin films. Semicond. Sci. Technol. 24(10), 105013 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    C.P. Chan, H. Lam, C. Surya, Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol. Energy Mater. Sol. Cells 94(2), 207–211 (2010)CrossRefGoogle Scholar
  11. 11.
    J.P. Leitão et al., Study of optical and structural properties of Cu2ZnSnS4 thin films. Thin Solid Films 519(21), 7390–7393 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Su et al., Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Appl. Surf. Sci. 258(19), 7678–7682 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    N.M. Shinde, R.J. Deokate, C.D. Lokhande, Properties of spray deposited Cu2ZnSnS4 (CZTS) thin films. J. Anal. Appl. Pyrolysis 100, 12–16 (2013)CrossRefGoogle Scholar
  14. 14.
    M.Z. Ansari, N. Khare, Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition. J. Phys. Appl. Phys. 47(18), 185101 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    R. Touati, M. Ben Rabeh, M. Kanzari, ‘Effect of post-sulfurization on the structural and optical properties of Cu 2 ZnSnS4 thin films deposited by vacuum evaporation method’. Thin Solid Films 582, 198–202 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    F. Aslan, A. Göktaş, A. Tumbul, Influence of pH on structural, optical and electrical properties of solution processed Cu2ZnSnS4 thin film absorbers. Mater. Sci. Semicond. Process. 43, 139–143 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Courel, J.A. Andrade-Arvizu, A. Guillén-Cervantes, M.M. Nicolás-Marín, F.A. Pulgarín-Agudelo, O. Vigil-Galán, Optimization of physical properties of spray-deposited Cu 2 ZnSnS 4 thin films for solar cell applications. Mater. Des. 114, 515–520 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Tumbul, M.Z. Göktaş, Zarbali, F. Aslan, Structural, morphological and optical properties of the vacuum-free processed CZTS thin film absorbers. Mater. Res. Express 5(6), 066408 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Yan et al., Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3(9), 764–772 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    K. Sun et al., Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdx S buffer layer. Adv. Energy Mater. 6(12), 1600046 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 65, 141–148 (2001)CrossRefGoogle Scholar
  22. 22.
    H. Katagiri, K. Jimbo, K. Moriya, K. Tsuchida, Solar cell without environmental pollution by using CZTS thin film. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, vol. 3 (IEEE, 2003), pp. 2874–2879Google Scholar
  23. 23.
    T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Investigation of Cu ZnSnS-based thin film solar cells using abundant materials. Jpn. J. Appl. Phys. 44, 783–787 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    K. Moriya, K. Tanaka, H. Uchiki, Fabrication of CuZnSnS thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 46, 5780–5781 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H. Katagiri et al., Enhanced conversion efficiencies of CuZnSnS -based thin film solar cells by using preferential etching technique. Appl. Phys. Express 1, 041201 (2008)Google Scholar
  26. 26.
    A. Ennaoui et al., Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films 517(7), 2511–2514 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    K. Wang et al., Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97(14), 143508 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 95(3), 838–842 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Sol. Energy Mater. Sol. Cells 95(10), 2855–2860 (2011)CrossRefGoogle Scholar
  30. 30.
    R.B.V. Chalapathy, G.S. Jung, B.T. Ahn, Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells. Sol. Energy Mater. Sol. Cells 95(12), 3216–3221 (2011)CrossRefGoogle Scholar
  31. 31.
    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, ‘Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber: Cu2ZnSnS4 solar cell with 8.4% efficiency’. Prog. Photovolt. Res. Appl. 21(1), 72–76 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2(2), 253–259 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Fukano, S. Tajima, T. Ito, Enhancement of conversion efficiency of CuZnSnS thin film solar cells by improvement of sulfurization conditions. Appl. Phys. Express, 6, 062301 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    P. Emrani, Vasekar, C.R. Westgate, Effects of sulfurization temperature on CZTS thin film solar cell performances. Sol. Energy 98, 335–340 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    T.P. Dhakal, C. Peng, R. Reid Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23–30 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack. Adv. Energy Mater. 4(7), 1301381 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Tao et al., A sputtered CdS buffer layer for co-electrodeposited CuZnSnS solar cells with 6.6% efficiency. Chem. Commun. 51, 10337–10340 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Tao et al., 7.1% efficient co-electroplated CuZnSnS thin film solar cells with sputtered CdS buffer layers. Green Chem. 18, 550–557 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Tajima, M. Umehara, M. Hasegawa, T. Mise, T. Itoh, Cu 2ZnSnS4 photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition: Cu 2ZnSnS4 photovoltaic cell with improved efficiency. Prog. Photovolt. Res. Appl. 25(1), 14–22 (2017)CrossRefGoogle Scholar
  40. 40.
    M.G. Sousa, A.F. da Cunha, J.P. Teixeira, J.P. Leitão, G. Otero-Irurueta, M.K. Singh, Optimization of post-deposition annealing in Cu 2 ZnSnS 4 thin film solar cells and its impact on device performance. Sol. Energy Mater. Sol. Cells 170, 287–294 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Rühle, Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    M. Mazzeret al., Bifacial CIGS solar cells grown by low temperature pulsed electron deposition. Sol. Energy Mater. Sol. Cells 166, 247–253 (2017)CrossRefGoogle Scholar
  43. 43.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, ‘Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%’. Phys. Status Solidi RRL Rapid Res. Lett. 10(8), 583–586 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    K. Zhang, H. Guo, Effects of annealing on Cu2ZnSnS4 thin films prepared on Mo substrate and the fabrication of solar cells. J. Mater. Sci. Mater. Electron. 28(22), 17044–17048 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Tao et al., Co-electrodeposited CuZnSnS thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. J. Mater. Chem. A 4, 3798–3805 (2016)CrossRefGoogle Scholar
  46. 46.
    N. Naghavi et al., Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl. 18(6), 411–433 (2010)CrossRefGoogle Scholar
  47. 47.
    M. Polman, E.C. Knight, B. Garnett, Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352(6283), aad4424 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Katagiri, K. Jimbo, M. Tahara, H. Araki, K. Oishi, The influence of the composition ratio on CZTS-based thin film solar cells., MRS Proc. 1165, (2009)Google Scholar
  49. 49.
    M.T. Htay et al., A cadmium-free Cu2ZnSnS4/ZnO hetrojunction solar cell prepared by practicable processes. Jpn. J. Appl. Phys. 50, 032301 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    A.I. Inamdar, K.-Y. Jeon, H. Woo, W. Jung, H. Im, H. Kim, Synthesis of a Cu2ZnSnS4 (CZTS) absorber layer and metal doped ZnS buffer layer for heterojunction solar cell applications. ECS Trans. 41(4), 167–175 (2011)CrossRefGoogle Scholar
  51. 51.
    J. Kim et al., Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells. Thin Solid Films 566, 88–92 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    V.G. Rajeshmon, C.S. Kartha, K.P. Vijayakumar, A.B. Garg, R. Mittal, R. Mukhopadhyay, Spray pyrolysed Cu[sub 2]ZnSnS[sub 4] solar cell using cadmium free buffer layer’, presented at the solid state physics, proceedings of the 55th day solid state physics symposium 2010 (Manipal, 2011) pp. 683–684Google Scholar
  53. 53.
    J. Yu et al., Effect of deposited temperatures of the buffer layer on the band offset of CZTS/In 2 S 3heterostructure and its solar cell performance. Chin. Phys. B 26(4), 046802 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    T. Ericson et al., Zn(O, S) Buffer layers and thickness variations of CdS buffer for Cu $_{2}$ZnSnS$_{4}$ solar cells. IEEE J. Photovolt. 4(1), 465–469 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    C. Platzer-Björkman et al., Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1–xSnxOy buffer layers. Appl. Phys. Lett. 107(24), 243904 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    T. Ericson et al., Zinc–Tin–Oxide buffer layer and low temperature post annealing resulting in a 9.0% efficient Cd-free Cu 2ZnSnS4 solar cell. Sol. RRL 1(5), 1700001 (2017)CrossRefGoogle Scholar
  57. 57.
    X. Cui et al., Enhanced heterojunction interface quality to achieve 9.3% efficient Cd-free Cu 2ZnSnS4 solar cells using atomic layer deposition ZnSnO buffer layer. Chem. Mater. 30(21), 7860–7871 (2018)CrossRefGoogle Scholar
  58. 58.
    W. Wang et al., The effects of SnS 2 secondary phases on Cu 2ZnSnS4 solar cells: a promising mechanical exfoliation method for its removal. J. Mater. Chem. A 6(7), 2995–3004 (2018)CrossRefGoogle Scholar
  59. 59.
    T.J. Huang, X. Yin, G. Qi, H. Gong, CZTS-based materials and interfaces and their effects on the performance of thin film solar cells: CZTS-based materials and interfaces and their effects on the performance of thin film solar cells. Phys. Status Solidi RRL 08(09), 735–762 (2014)CrossRefGoogle Scholar
  60. 60.
    D. Mamedov, M. Klopov, S.Z. Karazhanov, Influence of Cu2S, SnS and Cu2ZnSnSe4 on optical properties of Cu2ZnSnS4. Mater. Lett. 202, 70–72 (2017)CrossRefGoogle Scholar
  61. 61.
    T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103(10), 103506 (2013)Google Scholar
  62. 62.
    C. Yan, J. Huang, K. Sun, Y. Zhang, M.A. Green, X. Hao, Efficiency improvement of high band gap Cu2ZnSnS4 solar cell achieved by silver incorporation. In IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp. 3709–3711 (2018)Google Scholar
  63. 63.
    C.-Y. Liu, Z.-M. Li, H.-Y. Gu, S.-Y. Chen, H. Xiang, X.-G. Gong, Sodium passivation of the grain boundaries in CuInSe2 and Cu 2ZnSnS4 for high-efficiency solar cells. Adv. Energy Mater. 7(8), 1601457 (2017)CrossRefGoogle Scholar
  64. 64.
    S. Zhuk, A. Kushwaha, T.K.S. Wong, S. Masudy-Panah, A. Smirnov, G.K. Dalapati, ‘Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance’. Sol. Energy Mater. Sol. Cells 171, 239–252 (2017)CrossRefGoogle Scholar
  65. 65.
    M. Courel, E. Valencia-Resendiz, J.A. Andrade-Arvizu, E. Saucedo, O. Vigil-Galán, ‘Towards understanding poor performances in spray-deposited Cu 2 ZnSnS 4 thin film solar cells. Sol. Energy Mater. Sol. Cells 159, 151–158 (2017)CrossRefGoogle Scholar
  66. 66.
    M. Courel et al., Study on the impact of stoichiometric and optimal compositional ratios on physical properties of Cu 2ZnSnS4 thin films deposited by spray pyrolysis. Mater. Res. Express 5(1), 015513 (2018)ADSCrossRefGoogle Scholar
  67. 67.
    C.W. Hong, S.W. Shin, M.P. Suryawanshi, M.G. Gang, J. Heo, J.H. Kim, Chemically deposited CdS buffer/kesterite Cu 2ZnSnS4 solar cells: relationship between CdS thickness and device performance. ACS Appl. Mater. Interfaces 9(42), 36733–36744 (2017)CrossRefGoogle Scholar
  68. 68.
    S. Rondiya et al., CZTS/CdS: interface properties and band alignment study towards photovoltaic applications. J. Mater. Sci. Mater. Electron. 29(5), 4201–4210 (2018)CrossRefGoogle Scholar
  69. 69.
    F. Liu et al., Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface. Appl. Phys. Lett. 104(5), 051105 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    H. Cui et al., Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application. MRS Proc., 1638 (2014)Google Scholar
  71. 71.
    W. Li, J. Chen, H. Cui, F. Liu, X. Hao, Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells. Mater. Lett. 130, 87–90 (2014)CrossRefGoogle Scholar
  72. 72.
    Z. Wei et al., Engineering of a Mo/SixNy diffusion barrier to reduce the formation of MoS2 in Cu2ZnSnS4 thin film solar cells. ACS Appl. Energy Mater. 1(6), 2749–2757 (2018)CrossRefGoogle Scholar
  73. 73.
    J. Park et al., ‘The effect of thermal evaporated MoO3 intermediate layer as primary back contact for kesterite Cu 2 ZnSnS 4 solar cells. Thin Solid Films 648, 39–45 (2018)ADSCrossRefGoogle Scholar
  74. 74.
    S. Selberherr, Analysis and simulation of semiconductor devices (Springer, New York, 2013)Google Scholar
  75. 75.
    J.L. Gray, ADEPT: a general purpose numerical device simulator for modeling solar cells in one-, two-, and three-dimensions, In Photovoltaic Specialists Conference, Conference Record of the Twenty Second IEEE, pp. 436–438 (1991)Google Scholar
  76. 76.
    S.J. Fonash et al., A manual for AMPS-1D: a one-dimensional device simulation program for the analysis of microelectronic and photonic structures, Pennsylvania State UniversityGoogle Scholar
  77. 77.
    R. Stanglet al., ‘AFORS-HET a numerical PC-program for simulation of heterojunction solar, cells, version 1.1 (open-source on demand), to be distributed for public use. In Proc. 19th PVSEC, Paris, France, p. 1497 (2004)Google Scholar
  78. 78.
    ‘Semiconductor Software, Modeling the physics of semiconductor devices. Accessed: 30 Sep 2018 (Online)
  79. 79.
    PC1Dmod User Manual 6.1, Institute for Energy Technology, Norway & Fraunhofer Institute for Solar Energy Systems, Germany. Accessed 21 Jan 2019
  80. 80.
    M. Burgelman et al., SCAPS manual, University of Gent, Belgium (2018)Google Scholar
  81. 81.
    SILVACO International, ATLAS user’s manual: device simulation software (2004)Google Scholar
  82. 82.
    D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55, 2192–2193 (1967)CrossRefGoogle Scholar
  83. 83.
    N.D. Arora, J.R. Hauser, D.J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29, 292–295 (1982)ADSCrossRefGoogle Scholar
  84. 84.
    J.M. Dorkel, P. Leturcq, Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level. Solid State Electron. 24(9), 821–825 (1981)ADSCrossRefGoogle Scholar
  85. 85.
    D.B.M. Klaassen, A unified mobility model for device simulation, In International Technical Digest on Electron Devices, San Francisco, CA, USA, 1990, pp. 357–360 (1990)Google Scholar
  86. 86.
    M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovolt. Res. Appl. 12(23), 143–153 (2004)CrossRefGoogle Scholar
  87. 87.
    A. Haddout, A. Raidou, M. Fahoume, Numerical modeling of CdTe solar cells thin film investigation by using PC1D model. World J. Eng. 15, 549–555 (2018)Google Scholar
  88. 88.
    A. Haddout, Raidou, M. Fahoume, Influence of the layer parameters on the performance of the CdTe solar cells. Optoelectron. Lett. 14(2), 98–103 (2018)ADSCrossRefGoogle Scholar
  89. 89.
    A. Haddout, M. Raidou, N. Fahoume, Elharfaoui, M. Lharch, Influence of CZTS layer parameters on cell performance of Kesterite thin-film solar cells. In Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy, vol. 519, ed. by B. Hajji, G.M. Tina, K. Ghoumid, A. Rabhi, A. Mellit (Springer, Singapore, 2019), pp. 640–646CrossRefGoogle Scholar
  90. 90.
    T. Frisk, S.-Y. Ericson, P. Li, J. Szaniawski, Olsson, C. Platzer-Björkman, Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu 2 ZnSnS 4 device modeling. Sol. Energy Mater. Sol. Cells 144, 364–370 (2016)CrossRefGoogle Scholar
  91. 91.
    A. Pu et al., Sentaurus modelling of 6.9% Cu 2 ZnSnS 4 device based on comprehensive electrical & optical characterization. Sol. Energy Mater. Sol. Cells 160, 372–381 (2017)CrossRefGoogle Scholar
  92. 92.
    L.-Y. Lin, Y. Qiu, Y. Zhang, H. Zhang, Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS. Chin. Phys. Lett. 33(10), 107801 (2016)ADSCrossRefGoogle Scholar
  93. 93.
    M. Jani, D. Raval, I. Mukhopadhyay, A. Ray, Reinforcement of Zn(O,S) buffer layer for efficient band matching in a kesterite (Cu2ZnSnS4) solar cell and its analysis using simulation tool for the application in energy harvesting. In Presented at the Functional Oxides And Nanomaterials: Proceedings of the International Conference on Functional Oxides and Nanomaterials, vol. 1837, p. 040060 (2017)Google Scholar
  94. 94.
    V. Sivathanu, T. Rajalingam, T.R. Lenka, Modelling of CZTS/ZnS/AZO solar cell for efficiency enhancement. In 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, pp. 1–2 (2018)Google Scholar
  95. 95.
    M. Bahfir, Boumaour, M. Kechouane, Prospects of potential ZnMgO front layer in CZTS solar cells. Optik 169, 196–202 (2018)ADSCrossRefGoogle Scholar
  96. 96.
    M. Patel, A. Ray, Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments. Phys. B Condens. Matter 407(21), 4391–4397 (2012)ADSCrossRefGoogle Scholar
  97. 97.
    J. Xu, Investigation of Cu2ZnSnS4 thin-film solar cells with carrier concentration gradient. J. Phys. Chem. Solids 98, 32–37 (2016)ADSCrossRefGoogle Scholar
  98. 98.
    S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)ADSCrossRefGoogle Scholar
  99. 99.
    D. Adewoyin, M.A. Olopade, M. Chendo, Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Opt. Int. J. Light Electron Opt. 133, 122–131 (2017)CrossRefGoogle Scholar
  100. 100.
    Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Enhancement of the conversion efficiency of thin film kesterite solar cell. J. Renew. Sustain. Energy 10(3), 033501 (2018)CrossRefGoogle Scholar
  101. 101.
    Kumar, A.D. Thakur, Role of contact work function, back surface field, and conduction band offset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57(8S3), 08RC05 (2018)CrossRefGoogle Scholar
  102. 102.
    W. Zhao, W. Zhou, X. Miao, Numerical simulation of CZTS thin film solar cell. In 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 502–505 (2012)Google Scholar
  103. 103.
    K. Wang, B. Shin, K.B. Reuter, T. Todorov, D.B. Mitzi, S. Guha, Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 98(5), 051912 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    P. Chelvanathan, M.I. Hossain, J. Husna, M. Alghoul, K. Sopian, N. Amin, Effects of transition metal dichalcogenide molybdenum disulfide layer formation in Copper–Zinc–Tin–Sulfur solar cells from numerical analysis. Jpn. J. Appl. Phys. 51, 10NC32 (2012)Google Scholar
  105. 105.
    M.T. Ferdaous et al., Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis. Sol. Energy 178, 162–172 (2019)ADSCrossRefGoogle Scholar
  106. 106.
    S.M. Mopurisetty, M. Bajaj, S. Ganguly, TCAD calibration for Cu2ZnSnS4 solar cell simulation, In 2016 IEEE 43rd, Photovoltaic Specialists Conference (PVSC), pp. 2228–2231 (2016)Google Scholar
  107. 107.
    J.H.N. Tchognia et al., Optimization of the output parameters in kesterite-based solar cells by AMPS-1D, In 2015 3rd International, Renewable and Sustainable Energy Conference (IRSEC), IEEE, pp. 1–6 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics Laboratory, Department of PhysicsIbn Tofail UniversityKenitraMorocco

Personalised recommendations