Advertisement

Applied Physics A

, 125:117 | Cite as

Influence of growth conditions on the quality of strained InAlGaAs/AlGaAs quantum wells grown by MOCVD

  • Yongming Zhao
  • Jie Huang
  • Yurun Sun
  • Shuzhen Yu
  • Kuilong LiEmail author
  • Jianrong DongEmail author
Article
  • 21 Downloads

Abstract

Compressive-strained InAlGaAs quantum wells (QWs) were grown on GaAs substrates by metal organic chemical vapor deposition (MOCVD). The influences of reactor pressure, V/III ratio, growth temperature, and substrate orientation on the quality of InAlGaAs QWs were studied using high resolution X-ray diffraction (HR-XRD), photoluminescence (PL) and atomic force microscope (AFM) measurements. The PL results indicate that the PL intensity and full width at the half-maximum (FWHM) of QWs are very sensitive to the growth conditions such as reactor pressure, growth temperature, and substrate orientation. The AFM results demonstrate that the growth mode of epilayer is dominated by the orientation of substrate. The growth mode of samples grown on 0.5° miscut and 2° miscut substrates is step flow and step bunching, respectively. The samples grown on 0.5° miscut substrates have higher PL intensity comparison with the samples grown on 2° miscut substrates at the same growth conditions. The PL and AFM results of sample grown at 700 °C and a pressure of 50 mbar with a V/III ratio of 100 indicated that these growth parameters are close to the optimum growth conditions for InAlGaAs QWs.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under contract No. 61604171 and 61804086, and the Jiangsu Province Science Foundation for Youths under contract No. BK20170431.

References

  1. 1.
    J. Zhang, Y.Q. Ning, Y.G. Zeng, J.W. Zhang, J.L. Zhang, X.H. Fu, C.Z. Tong, L.J. Wang, Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks. Laser Phys. Lett. 113, 45802–45806 (2013)CrossRefGoogle Scholar
  2. 2.
    A.E. Zhukov, L.V. Asryan, E.S. Semenova, F.I. Zubov, N.V. Kryzhanovskaya, M.V. Maximov, On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates. Semiconductors 49, 935–938 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Shi, W.C. Weng, F.M. Kuo, Y.J. Yang, S. Pinches, M. Geen, A. Joel, High-performance Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with strained InAlGaAs multiple quantum wells. IEEE Photonics J. 2, 960–966 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Genest, J.J. Dubowski, V. Aimez, Suppressed intermixing in InAlGaAs/AlGaAs/GaAs and AlGaAs/GaAs quantum well heterostructures irradiated with a KrF excimer laser. Appl. Phys. A Mater. 89, 423–426 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Qu, S. Yuan, C.Y. Liu, B.X. Bo, G.J. Liu, H.L. Jiang, High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm. IEEE Photonic Tech. L. 16, 389–391 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Jensen, J.M. Hvam, W. Langbein, Optical properties of InAlGaAs quantum wells: Influence of segregation and band bowing. J. Appl. Phys. 86, 2584–2589 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    K. Makita, I. Watanabe, M. Tsuji, K. Taguchi, Dark current and breakdown analysis in In(Al)GaAs/InAlAs superlattice avalanche photodiodes. Jpn. J. Appl. Phys. 35, 3440–3444 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    G.P. Kothiyal, S. Hong, N. Debbar, P.K. Bhattacharya, J. Singh, Enhancement in excitonic absorption due to overlap in heavy-hole and light-hole excitons in GaAs/InAlGaAs quantum-well structures. Appl. Phys. Lett. 51, 1091–1093 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    T.W. Schlereth, C. Schneider, S. Hofling, A. Forchel, Tailoring of morphology and emission wavelength of AlGaInAs quantum dots. Nanotechnology 19, 045601 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Chika, H. Kato, M. Nakayama, Temperature dependence of molecular beam epitaxial growth rates for InxGa1–xAs and InxAl1–xAs. Jpn. J. Appl. Phys. 25, 1441–1442 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    W.T. Tsang, The influence of bulk nonradiative recombination in the wide band-gap regions of molecular beam epitaxially grown GaAs-AIGaAs DH lasers. Appl. Phys. Lett. 33, 245–248 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    W.T. Tsang, F.K. Reinhart, J.A. Ditzenberger, The effect of substrate temperature on the current threshold of GaAs-AlGaAs double heterostructure lasers grown by molecular beam epitaxy. Appl. Phys. Lett. 36, 118–121 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    J. Singh, K.K. Bajaj, Role of interface roughness and alloy disorder in photoluminescence in quantum-well structures. J. Appl. Phys. 57, 5433–5437 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    A. Jasik, A. Wnuk, A. Wojcik-Jedlinska, R. Jakiela, J. Muszalski, W. Strupinski, M. Bugajski, The influence of the growth temperature and interruption time on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods. J. Cryst. Growth 310, 2785–2792 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A. Jasik, A. Wnuk, J. Gaca et al., The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods. J. Cryst. Growth 311, 4423–4432 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    N. Inoue, K. Ikuta, M. Shinohara, J. Osaka, Interface structures in GaAsAl(Ga)As quantum wells controlled by metalorganic vapor phase epitaxy and molecular beam epitaxy. J. Cryst. Growth 146, 379–383 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    M. Shinohara, N. Inoue, Behavior and mechanism of step bunching during metal organic vapor phase epitaxy of GaAs. Appl. Phys. Lett. 66, 1936–1938 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    J.H. Neave, P.J. Dobson, B.A. Joyce, J. Zhang, Reflection high-energy electron diffraction oscillations from vicinal surfaces-a new approach to surface diffusion measurements. Appl. Phys. Lett. 47, 100–102 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    T. Nishinaga, K. Cho, Theoretical study of mode transition between 2d-nucleation and step flow in MBE growth of GaAs. Jpn. J. Appl. Phys. 27, L12–L12 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    F. Bugge, U. Zeimer, M. Sato, M. Weyers, G. Trankle, MOVPE growth of highly strained InGaAs/GaAs quantum wells. J. Cryst. Growth 183, 511–518 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    K. Muraki, S. Fukatsu, Y. Shiraki, R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557–559 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    P.D. Dapkus, H.M. Manasevit, K.L. Hess et al., High purity GaAs prepared from trimethylgallium and arsine. J. Cryst. Growth 55, 10–23 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Nano devices and Applications, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences (CAS)SuzhouPeople’s Republic of China
  2. 2.School of Electronic and Information Engineering (Department of Physics)Qilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China

Personalised recommendations