Applied Physics A

, 125:111 | Cite as

Inserting a nonmagnetic spacer layer in Nd2Fe14B/α″-(FeCo)16N2 bilayers significantly improves their coercivity

  • Jiuping Fan
  • Jia He
  • Xiaoyan Zhang
  • Wenjie Dong
  • Yuhao BaiEmail author
  • Xiaohong XuEmail author


The hysteresis loops, magnetic reversal processes, and energy variation of exchange-coupled Nd2Fe14B/α″-(FeCo)16N2 bilayers inserted with a nonmagnetic spacer layer were systematically investigated based on the object-oriented micromagnetic framework (OOMMF) software. The insertion of a nonmagnetic spacer layer can greatly improve the coercivity of the system. The coercivity of the system with different contact areas (CAs) between the Nd2Fe14B and α″-(FeCo)16N2 layers was discussed. It was calculated that the coercivity with 16% CA was about three times larger than that of soft/hard bilayers. The increased coercivity is attributed to the domain wall pinning. In addition, the effects of a deviation angle β between the easy axis and the applied field and different thicknesses of soft layer on the coercivity of the system were analyzed. The system possesses optimal magnetic properties and maximum coercivity when the applied field is applied along the easy axis. Furthermore, both nucleation fields and coercivity decrease monotonically with the increase of the soft layer thickness. Our results are useful in tuning the coercivity of the nanocomposite magnetic materials.



This work is supported by the NSFC (Nos. 51301099, 11404202 and 51571135), the Natural Science Foundation of Shanxi Province (Nos. 2013011014-4 and 2013021010-3).


  1. 1.
    E.F. Kneller, R. Hawig, The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. You, Y.Z. Guo, Plasma enhanced atomic layer deposition of Co thin film on t-MnAl for effective magnetic exchange coupling and enhanced energy products. J. Alloys Compd. 758, 116–121 (2018)CrossRefGoogle Scholar
  3. 3.
    K. Wang, Y.H. Wang, F.J. Ling, Z. Xu, Perpendicular exchange coupling effects in ferrimagnetic TbFeCo/GdFeCo hard/soft structures. J. Magn. Magn. Mater. 452, 153–156 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Xiang, C.W. Chen, Spatial distribution characteristics of magnetization in exchange-coupled bilayers with mutually orthogonal anisotropies. J. Magn. Magn. Mater. 430, 1–5 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Xiang, C.W. Chen, K. Wang, Micromagnetic study of magnetization reversal in exchange spring systems with mutually orthogonal anisotropies. J. Alloys Compd. 682, 370–374 (2016)CrossRefGoogle Scholar
  6. 6.
    J.P. Fan, X.Y. Zhang, Y.N. Jiang, R.Y. Liang, J. Sun, Y.H. Bai, X.H. Xu, Optimization of energy product and reversal process for Nd2Fe14B/α″-(FeCo)16N2/Nd2Fe14B exchange-spring trilayer films. J. Magn. Magn. Mater. 441, 43–48 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    X.L. Wan, G.P. Zhao, X.F. Zhang, J. Xia, X.C. Zhang, F.J. Morvan, Hysteresis of misaligned hard–soft grains. J. Magn. Magn. Mater. 397, 181–187 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Fan, R.Y. Liang, Y.H. Bai, Y. Yang, J. Sun, Y.N. Jiang, F. Wang, X.H. Xu, Magnetic properties and magnetic reversal process of exchange-coupled Nd2Fe14B/α″-Fe16N2 bilayers. J. Appl. Phys. 119, 233902 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    W.J. Si, G.P. Zhao, N. Ran, Y. Peng, F.J. Morvan, X.L. Wan, Deterioration of the coercivity due to the diffusion induced interface layer in hard/soft multilayers. Sci. Rep. 5, 16212 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Y.Q. Li, M. Yue, Q. Wu, T. Wang, C.X. Cheng, H.X. Chen, Investigation on magnetic properties of parallel and perpendicular oriented Nd2Fe14B/Fe65Co35/Nd2Fe14B films by the micro-magnetism finite element method. J. Magn. Magn. Mater. 394, 117–120 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    X.C. Zhang, G.P. Zhao, J. Xia, M. Yue, X.H. Yuan, L.H. Xie, Micromagnetic simulation of Sm–Co/a-Fe/Sm–Co trilayers with various angles between easy axes and the film plane. Chin. Phys. B 23, 097504 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    X.H. Yuan, G.P. Zhao, M. Yue, L.N. Ye, J. Xia, X.C. Zhang, J. Chang, 3D and 1D calculation of hysteresis loops and energy products for anisotropic nanocomposite films with perpendicular anisotropy. J. Magn. Magn. Mater. 343, 097504 (2013)Google Scholar
  13. 13.
    J. Xia, G.P. Zhao, H.W. Zhang, Z.H. Cheng, Y.P. Feng, J. Ding, H.T. Yang, Significant deterioration of energy products in exchange-coupled composite magnets. J. Appl. Phys. 112, 013918 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    V. Russier, K. Younsi, L. Bessais, Nanostructured exchange coupled hard/soft composites: from the local magnetization profile to an extended 3d simple model. J. Magn. Magn. Mater. 324, 1122–1128 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W. Zhang, G.P. Zhao, X.H. Yuan, L.N. Ye, 3D and 1D micromagnetic calculation for hard/soft bilayers with in-plane easy axes. J. Magn. Magn. Mater. 324, 4231–4236 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. Sawatzki, R. Heller, Ch Mickel, M. Seifert, L. Schultz, V. Neu, Largely enhanced energy density in epitaxial SmCo5/Fe/SmCo5 exchange spring trilayers. J. Appl. Phys. 109, 123922 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G.P. Zhao, Y. Deng, H.W. Zhang, L. Chen, Y.P. Feng, N. Bo, Thickness dependent magnetic reversal process and hysteresis loops in exchange-coupled hard-soft trilayers. J. Appl. Phys. 108, 093928 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    G.P. Zhao, X.L. Wang, C. Yang, L.H. Xie, G. Zhou, Self-pinning: Dominant coercivity mechanism in exchange-coupled permanent/composite magnets. J. Appl. Phys. 101, 09K102 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, Y.K. Takahashi, R. Gopalan, K. Hono, Sm(Co,Cu)5/Fe exchange spring multilayer films with high energy product. Appl. Phys. Lett. 86, 122509 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J.H. Jiang, N. Tezuka, K. Inomata, Indirect exchange spring between FePt and Fe with a Ru interlayer. J. Magn. Magn. Mater. 302, 40–46 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J. Zhang, Y.K. Takahashi, R. Gopalan, K. Hono, Microstructures and coercivities of SmCox and Sm(Co,Cu)5 films prepared by magnetron sputtering. J. Magn. Magn. Mater. 310, 1–7 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    F. Zhang, Z.X. Huang, Z.G. Lan, Z.L. Cui, J.H. Guo, W.M. Cheng, X.F. Yang, Effect of chromium interlayer on magnetic exchange coupling of SmCo/Cr/TbFeCo multilayer thin films. J. Rare Earths 26, 375 (2008)CrossRefGoogle Scholar
  23. 23.
    W.B. Cui, S.J. Zheng, W. Liu, X.L. Ma, F. Yang, Q. Yao, X.G. Zhao, Z.D. Zhang, Anisotropic behavior of exchange coupling in textured Nd2Fe14B/α-Fe multilayer films. J. Appl. Phys. 104, 053903 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    W.B. Cui, W. Liu, J. Li, F. Yang, Q. Zhang, X.G. Liu, Z.D. Zhang, Structure, magnetic properties and coercivity mechanism of the Mo-spacered Nd2Fe14B/α-Fe textured multilayer films. J. Phys. D Appl. Phys. 41, 245007 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J. Zhang, F. Wang, Y. Zhang, J.Z. Song, Y. Zhang, B.G. Shen, J.R. Sun, Large improvement of coercivity in Sm-(Co,Cu)/Fe films by Cu addition. J. Nanosci. Nanotechnol. 12, 1109–1113 (2012)CrossRefGoogle Scholar
  26. 26.
    W.B. Cui, Y.K. Takahashi, K. Hono, Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv. Mater. 24, 6530–6535 (2012)CrossRefGoogle Scholar
  27. 27.
    W.B. Cui, H. Sepehri-Amin, Y.K. Takahashi, K. Hono, Hard magnetic properties of spacer-layer-tuned NdFeB/Ta/Fe nanocomposite films. Acta. Mater. 84, 405–412 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi, Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J. Appl. Phys. 59, 873 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    M.J. Donahue, D.G. Porter, OOMMF User’s guide, version 1.0. NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, 1999)Google Scholar
  30. 30.
    W.F. Brown Jr., Virtues and weaknesses of the domain concept. Rev. Mod. Phys. 17, 15 (1945)ADSCrossRefGoogle Scholar
  31. 31.
    G.P. Zhao, X.L. Wang, Nucleation, pinning, and coercivity in magnetic nanosystems: an analytical micromagnetic approach. Phys. Rev. B 74, 012409 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    J.P. Fan, J. Sun, Y. Yang, R.Y. Liang, Y.N. Jiang, J. Zhang, X.H. Xu, Effect of nitrogen and cobalt additions on surface morphology and magnetic properties of Fe thin films. J. Alloys Compd. 662, 541–545 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of EducationShanxi Normal UniversityLinfenChina
  2. 2.Research Institute of Materials Science, Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and TechnologyShanxi Normal UniversityLinfenChina
  3. 3.College of Physics and Electronic InformationShanxi Normal UniversityLinfenChina

Personalised recommendations