Advertisement

Applied Physics A

, 125:109 | Cite as

Influence of non-stoichiometry on the ferroelectric aging properties of Mn-doped BaTiO3 ceramics

  • Wei Chen
  • Xia ZhaoEmail author
Article
  • 24 Downloads

Abstract

In the present work, the effect of the non-stoichiometry on the dielectric and ferroelectric properties especially the aging phenomenon of Bam(Ti0.995Mn0.005)O3 ceramics is studied. With the A/B site stoichiometry ratio m increased from 0.990 to 1.010, the Curie temperature is decreased from 128 to 118 °C monotonically. The non-stoichiometry shows the dramatic effect on the aging phenomenon of the Mn-doped BaTiO3 ceramics. As the aged sample with m < 1, an obvious constriction of hysteresis loop and recoverable electro-strain curve are observed. With m increased to 0.997, the recoverable electro-strain shows the highest value of 0.17%, whereas for the m > 1 samples, it shows the normal hysteresis loop and electro-strain curve as the un-aged samples. The valence state analysis of Mn ions shows that for the m < 1 and m = 1 samples only Mn2+ ions exist, while for the m > 1 samples Mn2+ and Mn4+ ions co-exist. Moreover, with m decreasing, the amount of Mn2+ ions increases. It is proposed that the non-stoichiometry affects the valence state of Mn ions, which causes the number of oxygen vacancies to change, ultimately affecting the aging effect of the Mn-doped BaTiO3 ceramics.

Notes

Acknowledgements

This research was supported by the Natural Science Foundation of China (Grant number 51707177).

References

  1. 1.
    A. Rae, M. Chu, V. Ganine, Barium titanate-past, present and future in ceramic transactions. In ed. by K.M. Nair, A.S. Bhalla. Dielectric Ceramic Materials (The American Ceramic Society, Westerville, 1999), pp. 1–12Google Scholar
  2. 2.
    T.G. Reynold III, Application space influences electronic ceramic materials. Am. Ceram. Soc. Bull 80, 29–33 (2001)Google Scholar
  3. 3.
    D.P. Shay, N.J. Nikolas, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Jeong, Y.H. Han, Electrical properties of acceptor doped BaTiO3. J. Electroceram. 13, 549–53 (2004)CrossRefGoogle Scholar
  5. 5.
    S.I. Osawa, A. Furuzawa, N. Fujikawa, Effect of the manganese valence state on the electrical conductivity of barium titanate. J. Am. Ceram.Soc. 76, 1191–1194 (1993)CrossRefGoogle Scholar
  6. 6.
    W. Cai, C. Fu, G. Gao, X. Deng, Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1 − x)BiFeO3 solid solution ceramics. J. Mater. Sci. Mater. Electron. 21, 317–325 (2010)CrossRefGoogle Scholar
  7. 7.
    S.H. Cha, Y.H. Han, Effects of Mn doping on dielectric properties of Mg-doped BaTiO3. J. Appl. Phys. 100, 104102 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    H. Moriwake, C.A.J. Fisher, A. Kuwabara, First-principles calculations of electronic structure and solution energies of Mn-doped BaTiO3. Jpn. J. Appl. Phys. 49, 09MC01 (2010)CrossRefGoogle Scholar
  9. 9.
    M.M. Vijatović Petrović, J.D. Bobić, R. Grigalaitis, B.D. Stojanović, J. Banys, La-doped and La/Mn-co-doped barium titanate ceramics. Acta Phys. Pol. A 124, 155–160 (2013)CrossRefGoogle Scholar
  10. 10.
    H.T. Langhammer, T. Müller, A. Polity, K.-H. Felgner, H.-P. Abicht, On the crystal and defect structure of manganese-doped barium titanate ceramics. Mater. Lett. 26, 205–10 (1996)CrossRefGoogle Scholar
  11. 11.
    J. Weiss, G. Rosenstein, Addition of Ba2TiSi2O8 to manganese-doped barium titanate: effect on oxygen diffusion and grain-boundary composition. J. Mater. Sci. 23, 3263–3271 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    D.Y. Wang, K. Umeya, Spontaneous polarization screening effect and trap-state density at grain boundaries of semiconducting barium titanate ceramics. J. Am. Ceram. Soc. 74, 280–286 (1991)CrossRefGoogle Scholar
  13. 13.
    Y.C. Chen, G.-M. Lo, C.-R. Shih, L. Wu, M.-H. Chen, K.-C. Huang, Influence of manganese on lanthanum-doped BaTiO3, Jpn. J. Appl. Phys. 33, 1412–1416 (1994)CrossRefGoogle Scholar
  14. 14.
    J. Illingsworth, H.M. AlAllak, A.W. Brinkman, J. Woods, The influence of Mn on the grain-boundary potential barrier characteristics of donor-doped BaTiO3 ceramics. J. Appl. Phys. 67, 2088–2092 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    T. Baiatu, R. Waster, Härdtl, dc Electrical degradation of perovskite-type titanates: I. Ceram. J. Am. Ceram.Soc. 73, 1645–1653 (1990) and K.CrossRefGoogle Scholar
  16. 16.
    [16]S.H. Yoon, C.A. Randall, K.H. Hur, Correlation between resistance degradation and thermally stimulated depolarization current in acceptor (Mg)-doped BaTiO3 submicrometer fine-grain ceramics. J. Am. Ceram.Soc. 93, 1950–1956 (2010)Google Scholar
  17. 17.
    F. Jona, G. Shirane, Ferroelectric Crystals (Macmillan, New York, 1962), p. 209Google Scholar
  18. 18.
    W.A. Schulze, K. Ogino, Review of literature on aging of dielectrics. Ferroelectrics 87, 361–377 (1988)CrossRefGoogle Scholar
  19. 19.
    K. Uchino, Ferroelectric Device (Dekker, New York, 2000), p. 279Google Scholar
  20. 20.
    F. Kulcsar, A microstructure study of barium titanate ceramics. J. Am. Ceram. Soc. 39(1), 13–17 (1955)CrossRefGoogle Scholar
  21. 21.
    C. Ning-Huat, D.M. Smyth, Defect chemistry of BaTiO3. J. Electrochem. Soc. 123(10), 1584–1585 (1976)CrossRefGoogle Scholar
  22. 22.
    T.F. Lin, C.T. Hu, I.N. Lin, Influence of stoichiometry on the microstructure and positive temperature coefficient of resistivity of semiconducting barium titanate ceramics. J. Am. Ceram. Soc. 73(3), 531–536 (1990)CrossRefGoogle Scholar
  23. 23.
    A. Beauger, J.C. Mutin, J.C. Niepce, Role and behavior of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics. J. Mater. Sci. 19(1), 195–201 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    J.K. Lee, K.S. Hong, J.W. Jang, Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84(9), 2001–2006 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Lee, Z.K. Liu, M.H. Kim, C.A. Randall, Influence of non-stoichiometry on ferroelectric phase transition in BaTiO3. J. Appl. Phys. 101, 0541195 (2007)Google Scholar
  26. 26.
    Y.H. Hu, M.P. Harmer, D.M. Smyth, Solubility of BaO in BaTiO3. J. Am. Ceram. Soc. 68(7), 372–376 (1985)CrossRefGoogle Scholar
  27. 27.
    W.P. Chen, Shen Z. A strong correlation of crystal structure and Curie point of barium titanate ceramics with Ba/Ti ratio of precursor composition. Phys. B Condens Matter 403(4), 660–663 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Y.K. Cho, S.L. Kang, D.Y. Yoon, Dependence of grain growth and grain-boundary structure on the Ba/Ti ratio in BaTiO3. J. Am. Ceram. Soc. 87, 119–124 (2004)CrossRefGoogle Scholar
  29. 29.
    P.R. Rios, T. Yamamoto, T. Kondo, et al., Abnormal grain growth kinetics of BaTiO3 with an excess TiO2. Acta Mater. 46(5), 1617–1623 (1998)CrossRefGoogle Scholar
  30. 30.
    G. Liu, R.D. Roseman, Effect of BaO and SiO2 addition on PTCR BaTiO3 ceramics. J. Mater. Sci. 34(18), 4439–4445 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    K. Carl, K.H. Hardtl, Electrical after-effects in Pb(Ti,Zr)O3 ceramics. Ferroelectrics 17, 473–486 (1977)CrossRefGoogle Scholar
  32. 32.
    K. Okazaki, H. Maiwa, Space charge effects on ferroelectric ceramic particle surfaces. Jpn. J. Appl. Phys. 31, 3113–3116 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    S. Takahashi, Internal bias field effects in lead zirconate–titanate ceramics doped with multiple impurities. Jpn. J. Appl. Phys. 20, 95–101 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Tian, Z. Xu, D. Viehland, Commonalties of the influence of lower valent Asite and B-site modifications on lead zirconate titanate ferroelectrics and antiferroelectrics. J. Mater. Res. 14, 465–475 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    L.X. Zhang, W. Chen, X. Ren, Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics. Appl. Phys. Lett. 85, 5658–5660 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    L.X. Zhang, X. Ren, In situ observation of reversible domain switching in aged Mn-doped BaTiO3 single crystals. Phys. Rev. B 71, 174108 (2005)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    L.X. Zhang, X. Ren, Aging behavior in single-domain Mn-doped BaTiO3 crystals: implication for a unified microscopic explanation of ferroelectric aging. Phys. Rev. B 73, 094121 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    A. Popa, D. Toloman, O. Raita, M. Stan, B.S. Vasile, C. Leostean, L.M. Giurgiu, Spin dynamics evidenced by EPR in Sn1−xMnxO2 nanoparticles annealed at different temperature. J. Alloys Compd. 551, (2013) 300–305CrossRefGoogle Scholar
  39. 39.
    M. Occhiuzzi, D. Cordischi, R. Dragone, Manganese ions in the monoclinic, tetragonal and cubic phases of zirconia: an XRD and EPR study. Phys. Chem. Chem. Phys. 5, 4938–4945 (2003)CrossRefGoogle Scholar
  40. 40.
    W. Chen, X. Zhao, J. Sun, et al., Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloys Compd. 670, 48–54 (2016)CrossRefGoogle Scholar
  41. 41.
    X. Zhao, W. Chen, L. Zhang et al., The effect of the bipolar field on the aging behavior and the associated properties of the Mn-doped BaTiO3 ceramics. J. Alloy. Compd. 618, 707–711 (2015)CrossRefGoogle Scholar
  42. 42.
    D.M. Smith, The Defect Chemistry of Metal Oxides (Oxford University Press, New York, 2000)Google Scholar
  43. 43.
    X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3(2), 91–94 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.High Voltage DepartmentChina Electric Power Research InstituteBeijingChina

Personalised recommendations