Applied Physics A

, 125:105 | Cite as

Synthesis of eco-friendly facile nano-sized zinc oxide particles using aqueous extract of Cymodocea serrulata and its potential biological applications

  • Srinath RajeswaranEmail author
  • Somasundaram Somasundaram Thirugnanasambandan
  • Sathishkumar Rengasamy Subramaniyan
  • Saravanan Kandasamy
  • Ravikumar Vilwanathan


Green synthesis of nanoparticles is an emerging branch of nanotechnology due to its low cost and effectiveness. In this study, zinc oxide (ZnO-NPs) nanoparticles were biosynthesized by an eco-friendly method using Cymodocea serrulata. They were characterized by Ultraviolet–visible (UV–vis) spectroscopy, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), X-ray diffractometer (XRD), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The synthesized crystalline nanoparticles were found to be 26.0–52.0 nm in size. The antioxidant activity of synthesized ZnO nanoparticles at 1000 µg/ml have revealed 75.55% in DPPH, 69.5% in deoxy-ribose, 62.75% in ABTS, 71.25% in nitric oxide and 74.10% in superoxide-scavenging assays. They also depicted significant bactericidal action against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Shigella flexneri. ZnO nanoparticles at 100 µg/ml concentration showed increased inhibition against B. subtilis with 18.0 mm, whereas moderate inhibition was seen against S. flexneri with 14.3 ± 0.25 mm. The cytotoxicity of ZnO-NPs was evaluated on A549 and H520 cell lines. The anti-proliferative effect was seen at 120 µg concentration on A549 and H520 cell lines with IC50 values of 55.0 ± 0.25 and 60.0 ± 0.50 µg/ml at 24 h. C. serrulata-coated zinc nanoparticles was found potential against bacterial pathogens and cancer cells. Therefore, they may be developed in future for biomedical applications.



The authors would like to thank Centralised Instrumentation and Service Laboratory (C.I.S.L), Department of Physics, Annamalai University, for providing facilities during the study period.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    C. Vidya, S. Hiremath, M.N. Chandraprabha, M.L. Antonyraj, I.V. Gopal, A. Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis gigantean. Int. J. Curr. Eng. Technol. 1, 118–120 (2013)Google Scholar
  2. 2.
    R. Aladpoosh, M. Montazer, The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features. Carbohydr. Polym. 126, 122–129 (2015)CrossRefGoogle Scholar
  3. 3.
    A.N.D. Krupa, R. Vimala, Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater. Sci. Eng. C. 61, 728–735 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Dhandapani, A.S. Siddarth, S. Kamalasekaran, S. Maruthamuthu, G. Rajagopal, Bio-approach: ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydr. Polym. 103, 448–455 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Zong, Z. Li, X. Wang, J. Ma, Y. Men, Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceram. Int. 40(7), 10375–10382 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Ramesh, M. Anbuvannan, G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 864–870 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    P.K. Vabbina, R. Sinha, A. Ahmadivand, M. Karabiyik, B. Gerislioglu, O. Awadallah, N. Pala, Sonochemical synthesis of a zinc oxide core–shell nanorod radial p–n homojunction ultraviolet photodetector. ACS Appl. Mater. Interfaces. 9(23), 19791–19799 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, D. Shen, Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces. 9(6), 5574–5579 (2017)CrossRefGoogle Scholar
  9. 9.
    L.R. Valerio, N.C. Mamani, A.O. de Zevallos, A. Mesquita, M.I.B. Bernardi, A.C. Doriguetto, H.B. de Carvalho, Preparation and structural-optical characterization of dip-coated nanostructured Co-doped ZnO dilute magnetic oxide thin films. RSC Adv. 7(33), 20611–20619 (2017)CrossRefGoogle Scholar
  10. 10.
    R.N. Ali, H. Naz, J. Li, X. Zhu, P. Liu, B. Xiang, Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles. J. Alloys Compd. 744, 90–95 (2018)CrossRefGoogle Scholar
  11. 11.
    T.E.P. Alves, C. Kolodziej, C. Burda, A. Franco Jr., Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Mater. Des. 146, 125–133 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Cai, Q. Luo, M. Sun, H. Cork, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74(17), 2157–2184 (2004)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, A.S. Ravipati, S.R. Koyyalamudi, S.C. Jeong, N. Reddy, P.T. Smith, J. Bartlett, K. Shanmugam, G. Munch, M.J. Wu, Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J. Agric. Food Chem. 59(23), 12361–12367 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Golbidi, S. Alireza Ebadi, I. Laher, Antioxidants in the treatment of diabetes. Curr. Diabetes Rev. 7(2), 106–125 (2011)CrossRefGoogle Scholar
  15. 15.
    S.C. Sati, M.D. Sati, R. Raturi, P.P. Badoni, H. Singh, A new flavonoidal glycoside from stem bark of Zanthoxylum armatum. IJPI’s J. Pharm. Herb. Form. 1(2), 29–32 (2011)Google Scholar
  16. 16.
    H. Agarwal, S. Menon, S.V. Kumar, S. Rajeshkumar, Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 286, 60–70 (2018)CrossRefGoogle Scholar
  17. 17.
    G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. A. 78(3), 595–604 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Dhobale, T. Thite, S.L. Laware, C.V. Rode, S.J. Koppikar, R.K. Ghanekar, S.N. Kale, Zinc oxide nanoparticles as novel alpha-amylase inhibitors. J. Appl. Phys. 104(9), 094907 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    G.J. Nohynek, E.K. Dufour, M.S. Roberts, Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol. Physiol. 21(3), 136–149 (2008)CrossRefGoogle Scholar
  20. 20.
    R. Wahab, Y.S. Kim, A. Mishra, S.I. Yun, H.S. Shin, Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res. Lett. 5(10), 1675 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. Zhang, D.G. Wingett, The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res. Lett. 4(12), 1409 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Wang, D. Wingett, M.H. Engelhard, K. Feris, K.M. Reddy, P. Turner, J. Layne, C. Hanley, J. Bell, D. Tenne, C. Wang, Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications. J. Mater. Sci. Mater. Med. 20(1), 11 (2009)CrossRefGoogle Scholar
  23. 23.
    K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    D. Guo, C. Wu, H. Jiang, Q. Li, X. Wang, B. Chen, Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B. 93(3), 119–126 (2008)CrossRefGoogle Scholar
  25. 25.
    M.D. de la Torre-Castro, P. Ronnback, Links between humans and seagrasses—an example from tropical East Africa. Ocean Coast. Manage. 47(7–8), 361–387 (2004)CrossRefGoogle Scholar
  26. 26.
    B.W. Souza, M.A. Cerqueira, A.I. Bourbon, A.C. Pinheiro, J.T. Martins, J.A. Teixeira, M.A. Coimbra, A.A. Vicente, Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll. 27(2), 287–292 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Ohkawa, N. Ohishi, K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358 (1979)CrossRefGoogle Scholar
  28. 28.
    T. Barahona, M.V. Encinas, A. Mansilla, B. Matsuhiro, E.A. Zuniga, A sulfated galactan with antioxidant capacity from the green variant of tetrasporic Gigartina skottsbergii (Gigartinales, Rhodophyta). Carbohydr. Res. 347(1), 114–120 (2012)CrossRefGoogle Scholar
  29. 29.
    C.R. Delma, S.T. Somasundaram, G.P. Srinivasan, M. Khursheed, M.D. Bashyam, N. Aravindan, Fucoidan from Turbinaria conoides: a multifaceted ‘deliverable’to combat pancreatic cancer progression. Int. J. Biol. Macromol. 74, 447–457 (2015)CrossRefGoogle Scholar
  30. 30.
    A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, M. Maaza, Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev. 10(4), 186–201 (2017)CrossRefGoogle Scholar
  31. 31.
    CLSI, Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24, vol 31, No. 1 (Clinical and Laboratory Standards Institute, Wayne, PA, 2014)Google Scholar
  32. 32.
    H. Ye, K. Wang, C. Zhou, J. Liu, X. Zeng, Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 111(2), 428–432 (2008)CrossRefGoogle Scholar
  33. 33.
    H.A. Salam, R. Sivaraj, R. Venckatesh, Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth-Lamiaceae leaf extract. Mater. Lett. 131, 16–18 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71(7), 1308–1316 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    A.B. Chanthini, G. Balasubramani, R. Ramkumar, R. Sowmiya, M. Dakshinamoorthi Balakumaran, P.T. Kalaichelvan, P. Perumal, Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R. Br.) Asch. and Magnus mediated silver nanoparticles. J. Photochem. Photobiol. B. 153, 145–152 (2015)CrossRefGoogle Scholar
  36. 36.
    G. Sathishkumar, C. Rajkuberan, K. Manikandan, S. Prabukumar, J. DanielJohn, S. Sivaramakrishnan, Facile biosynthesis of antimicrobial zinc oxide (ZnO) nanoflakes using leaf extract of Couroupita guianensis Aubl. Mater. Lett. 188, 383–386 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Padalia, S. Chanda, Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artif. Cells Nanomed. Biotechnol. 45(8), 1751–1761 (2017)CrossRefGoogle Scholar
  38. 38.
    D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess. Biosyst. Eng. 40(6), 943–957 (2017)CrossRefGoogle Scholar
  39. 39.
    P. Sutradhar, M. Saha, Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J. Exp. Nanosci. 11(5), 314–327 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P.K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 82, 39–45 (2018)CrossRefGoogle Scholar
  41. 41.
    C. Chinnasamy, P. Tamilselvam, B. Karthick, B. Sidharth, M. Senthilnathan, Green synthesis, characterization and optimization studies of zinc oxide nano particles using Costus igneus leaf extract. Mater. Today Proc. 5(2), 6728–6735 (2018)CrossRefGoogle Scholar
  42. 42.
    P.A. Sundaram, R. Augustine, M. Kannan, Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Bioprocess. Biosyst. Eng. 17(4), 835–840 (2012)CrossRefGoogle Scholar
  43. 43.
    M. Fazlzadeh, R. Khosravi, A. Zarei, Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution. Ecol. Eng. 103, 180–190 (2017)CrossRefGoogle Scholar
  44. 44.
    P. Jamdagni, P. Khatri, J.S. Rana, Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 30(2), 168–175 (2016)CrossRefGoogle Scholar
  45. 45.
    V.K. Vidhu, D. Philip, Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 134, 372–379 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    D. Suresh, P.C. Nethravathi, H. Rajanaika, H. Nagabhushana, S.C. Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 31, 446–454 (2015)CrossRefGoogle Scholar
  47. 47.
    G. Rajakumar, M. Thiruvengadam, G. Mydhili, T. Gomathi, I.M. Chung, Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess. Biosyst. Eng. 41(1), 21–30 (2018)CrossRefGoogle Scholar
  48. 48.
    V.N. Kalpana, R.R. Patra, V.D. Rajeswari, Green synthesis of zinc oxide nanoparticles using fresh stem of Cissus quadrangularis extract and its various in vitro studies. Asian J. Chem. 29(6), 1323 (2017)Google Scholar
  49. 49.
    B. Siripireddy, B.K. Mandal, Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv. Powder Technol. 28(3), 785–797 (2017)CrossRefGoogle Scholar
  50. 50.
    N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, P. Nandy, Green synthesis of zinc oxide nanoparticles using Hibiscus sabdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5(7), 4993–5003 (2015)CrossRefGoogle Scholar
  51. 51.
    W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 305(1), 85–95 (2015)CrossRefGoogle Scholar
  52. 52.
    K. Lingaraju, H.R. Naika, K. Manjunath, R.B. Basavaraj, H. Nagabhushana, G. Nagaraju, D. Suresh, Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl. Nanosci. 6(5), 703–710 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    B.N. Patil, T.C. Taranath, Limonia acidissima L. leaf mediated synthesis of silver and zinc oxide nanoparticles and their antibacterial activities. Microb. Pathog. 115, 227–232 (2018)CrossRefGoogle Scholar
  54. 54.
    J. Ali, R. Irshad, B. Li, K. Tahir, A. Ahmad, M. Shakeel, N.U. Khan, Z.U.H. Khan, Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. J. Photochem. Photobiol. B. 183, 349–356 (2018)CrossRefGoogle Scholar
  55. 55.
    M. Saravanan, V. Gopinath, M.K. Chaurasia, A. Syed, F. Ameen, N. Purushothaman, Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog. 115, 57–63 (2018)CrossRefGoogle Scholar
  56. 56.
    R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, Antimicrobial properties of ZnO nanomaterials: a review. Ceram. Int. 43(5), 3940–3961 (2017)CrossRefGoogle Scholar
  57. 57.
    M. Arakha, J. Roy, P.S. Nayak, B. Mallick, S. Jha, Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radic. Biol. Med. 110, 42–53 (2017)CrossRefGoogle Scholar
  58. 58.
    C.E. DeSantis, C.C. Lin, A.B. Mariotto, R.L. Siegel, K.D. Stein, J.L. Kramer, R. Alteri, A.S. Robbins, A. Jemal, Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin. 64(4), 252–271 (2014)CrossRefGoogle Scholar
  59. 59.
    R.I. Priyadharshini, G. Prasannaraj, N. Geetha, P. Venkatachalam, Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotech. 174(8), 2777–2790 (2014)CrossRefGoogle Scholar
  60. 60.
    A.P. Ashokan, M. Paulpandi, D. Dinesh, K. Murugan, C. Vadivalagan, G. Benelli, Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J. of Clust. Sci. 28(1), 205–226 (2017)CrossRefGoogle Scholar
  61. 61.
    Z. Sanaeimehr, I. Javadi, F. Namvar, Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer nano. 9(1), 3 (2018)CrossRefGoogle Scholar
  62. 62.
    S. Rajeshkumar, S.V. Kumar, A. Ramaiah, H. Agarwal, T. Lakshmi, S.M. Roopan, Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb. Technol. 117, 91–95 (2018)CrossRefGoogle Scholar
  63. 63.
    G. Bisht, S. Rayamajhi, ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine. 3, 3–9 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Srinath Rajeswaran
    • 1
    Email author
  • Somasundaram Somasundaram Thirugnanasambandan
    • 1
  • Sathishkumar Rengasamy Subramaniyan
    • 1
  • Saravanan Kandasamy
    • 2
  • Ravikumar Vilwanathan
    • 2
  1. 1.Centre of Advanced Study in Marine Biology, Faculty of Marine SciencesAnnamalai UniversityParangipettaiIndia
  2. 2.Department of Biochemistry, School of Life SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations