Advertisement

Applied Physics A

, 125:98 | Cite as

Fractal and multifractal analysis of In-doped ZnO thin films deposited on glass, ITO, and silicon substrates

  • Koushik Ghosh
  • R. K. Pandey
Article
  • 12 Downloads

Abstract

Indium-doped zinc oxide (IZO) thin films have been deposited on glass (IZO/glass), ITO (IZO/ITO), and silicon (IZO/Si) substrates using sol–gel spin coating method. Glancing angle X-ray diffraction has been used to verify phase purity, average grain size, and microcrystalline stress of the annealed films. Effect of substrates on surface morphology is explicitly investigated using the conventional statistical techniques along with nonlinear fractal and multifractal geometrical analysis. The root-mean-square surface roughness value is the lowest in IZO/glass films and increases in IZO/ITO films and the highest in IZO/Si films. Fractal and multifractal formalism acts as a scale-independent microscopic analytical tool for surface analysis. All IZO films show fractal and multifractal behaviour. The fractal parameters such as fractal dimensions and Hurst exponents are different for films deposited on different substrates and, thus, able to characterize surface morphology precisely. Hurst exponent values of IZO films indicate that although IZO/Si films have highest vertical roughness, it has strongly correlated (highest self-similarity) surface morphology than other two films deposited on glass and ITO substrates. Inhomogeneity in scaling exponents could be better understood with the help of multifractal formalism. The difference of fractal dimensions in all IZO films deposited on glass, ITO, and Si substrates is very small (almost close to zero). Therefore, there is very little multifractality exist in those film surfaces. Width of multifractal spectrum is the largest in IZO/Si and the smallest (also similar) in IZO/ITO and IZO/glass films, indicating that multifractallity in IZO/Si film is more prominent. A quantitative information about the surface morphology has been provided by inferring multifractal parameters. Detailed fractal and multifractal formalism of surface morphology may find its importance in understanding various surface-based device fabrication and performances.

Notes

Acknowledgements

Author KG thanks UGC, India, for providing fellowship to carry out this research work. Both authors are thankful to Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India, for providing synthesis and characterization facilities.

References

  1. 1.
    U. Ozgur, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. ‎Proc. IEEE 98(7), 1255–1268 (2010)Google Scholar
  2. 2.
    J. Lu, Z. Shi, Y. Wang, Y. Lin, Q. Zhu, Z. Tian, J. Dai, S. Wang, C. Xu, Plasmon-enhanced electrically light-emitting from ZnO nanorod arrays/p-GaN heterostructure devices. ‎Sci. Rep 6, 25645 (2016)ADSGoogle Scholar
  3. 3.
    M. Hussain, M.A. Abbasi, A. Khan, O. Nur, M. Willander, Comparative study of energy harvesting from ZnO nanorods using different flexible substrates. Energy Harvest. Syst. 1–2, 19–26 (2014)Google Scholar
  4. 4.
    E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3, e00285 (2017)CrossRefGoogle Scholar
  5. 5.
    V. Balaprakash, P. Gowrisankar, S. Sudha, R. Rajkumar, Aluminum doped ZnO transparent conducting thin films prepared by sol-gel dip coating technique for solar cells and optoelectronic applications. Mater. Technol. 33(6), 414–420 (2018)CrossRefGoogle Scholar
  6. 6.
    Q. Boyer, S. Duluard, C. Tenailleau, F. Ansart, V. Turq, J.P. Bonino, Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix. J. Mater. Sci. 52, 12677–12688 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    N. Mufti, D. Arista, M. Diantoro, A. Fuad, A. Taufiq, Sunaryono, the effect of thickness of ZnO thin films on hydrophobic self-cleaning properties. IOP Conf. Ser. Mater. Sci. Eng. 202, 012006 (2017)CrossRefGoogle Scholar
  8. 8.
    A.J. Mughal, B. Carberry, J.S. Speck, S. Nakamura, S.P. Denbaars, Structural and optical properties of group III doped hydrothermal ZnO thin films. J. Electron. Mater. 46(3), 1821–1825 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    B. Paul, B. Singh, S. Ghosh, A. Roy, A comparative study on electrical and optical properties of group III (Al, Ga, In) doped ZnO. Thin Solid Films 603, 21–28 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A. Hafdallah, F. Yanineb, M.S. Aida, N. Attaf, In doped ZnO thin films. J. Alloys Compd. 509, 7267–7270 (2011)CrossRefGoogle Scholar
  11. 11.
    E. Lunaarredondoa, A. Maldonadoa, R. Asomozaa, D.R. Acostab, M. Melendezlirac, M. Delalolvera. Indium-doped ZnO thin films deposited by the sol–gel technique. Thin Solid Films 490, 132–136 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Sun, S.-U. Jen, S.-C. Chen, S.-S. Ye, X. Wang, The electrical stability of In-doped ZnO thin films deposited by RF sputtering. J. Phys. D Appl. Phys. 50, 045102 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura, K. Uchida, Theoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir 31(26), 7355–7363 (2015)CrossRefGoogle Scholar
  14. 14.
    S.S. Latthe, C. Terashima, K. Nakata, A. Fujishima, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19, 4256–4283 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Hübschen, I. Altpeter, R. Tschuncky, H.-G. Herrmann, Materials Characterization Using Nondestructive Evaluation (NDE) Methods (Woodhead Publishing, New York, 2016)Google Scholar
  16. 16.
    P. Hall, S. Davies, On direction-invariance of fractal dimension on a surface. Appl. Phys. A 60, 271–274 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Y.R. Jeng, P.C. Tsai, T.H. Fang, Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy. Microelectron. Eng. 65, 406 (2003)CrossRefGoogle Scholar
  18. 18.
    A. Mannelqvist, M.R. Groth, Comparison of fractal analyses methods and fractal dimension for pre-treated stainless steel surfaces and the correlation to adhesive joint strength. Appl. Phys. A 73, 347–355 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    D. Raoufi, Fractal analyses of ITO thin films: a study based on power spectral density. Phys. B 405, 451–455 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    D. Dallaeva, S. Talu, S. Stach, P. Skarvada, P. Tomanek, L. Grmela, AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl. Surf. Sci. 312, 81–86 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L. Chen, J. Xu, P. Fleming, J.D. Holmes, M.A. Morris, Dynamic stable nanostructured metal oxide fractal films grown on flat substrates. J. Phys. Chem. C 112, 14286–14291 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Arjomandi, D. Raoufi, F. Ghamari, Surface characterization and morphology of conducting polypyrrole thin films during polymer growth on ITO glass electrode. J. Phys. Chem. C 120(32), 18055–18065 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Xie, W. Shao, L. Feng, L. Lv, L. Zhen, Fractal analysis of disordered conductor–insulator composites with different conductor backbone structures near percolation threshold. J. Phys. Chem. C 116, 19517–19525 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Chen, D. Pan, B. Zhao, G. Ding, Z. Jiao, M. Wu, C.-H. Shek, C.M.L. Wu, J.K.L. Lai, Insight on fractal assessment strategies for tin dioxide thin films. ACS Nano 4(2), 1202–1208 (2010)CrossRefGoogle Scholar
  25. 25.
    N. Saxena, T. Naik, S. Paria, Organization of SiO2 and TiO2 nanoparticles into fractal patterns on glass surface for the generation of superhydrophilicity. J. Phys. Chem. C 121(4), 2428–2436 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Awada, B. Grignard, C. Jerome, A. Vaillant, J.D. Coninck, B. Nysten, A.M. Jonas, Correlation between superhydrophobicity and the power spectral density of randomly rough surfaces. Langmuir 26(23), 17798–17803 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Jain, R. Pitchumani, Fractal model for wettability of rough surfaces. Langmuir 33, 7181–7190 (2017)CrossRefGoogle Scholar
  28. 28.
    U.B. Singh, R.P. Yadav, R.K. Pandey, D.C. Agarwal, C. Pannu, A.K. Mittal, Insight mechanisms of surface structuring and wettability of ion treated Ag thin films. J. Phys. Chem. C 120(10), 5755–5763 (2016)CrossRefGoogle Scholar
  29. 29.
    R.P. Yadav, M. Kumar, A.K. Mittal, S. Dwivedi, A.C. Pandey, On the scaling law analysis of nanodimensional LiF thin film surfaces. Mater. Lett. 126, 123–125 (2014)CrossRefGoogle Scholar
  30. 30.
    Ș Țălu, R.P. Yadav, A.K. Mittal, A. Achour, C. Luna, M. Mardani, S. Solaymani, A. Arman, F. Hafezi, A. Ahmadpourian, S. Naderi, K. Saghi, A. Méndez, G. Trejo, Application of Mie theory and fractal models to determine the optical and surface roughness of Ag–Cu thin films. Opt Quant Electron 49, 256 (2017)CrossRefGoogle Scholar
  31. 31.
    R.P. Yadav, D.C. Agarwal, M. Kumar, P. Rajput, D.S. Tomar, S.N. Pandey, P.K. Priya, A.K. Mittal, Effect of angle of deposition on the Fractal properties of ZnO thin film surface. Appl. Surf. Sci. 416, 51–58 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    R.P. Yadav, T. Kumar, A.K. Mittal, S. Dwivedi, D. Kanjilal, Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences. Appl. Surf. Sci. 347, 706–712 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    U.B. Singh, R.P. Yadav, R. Kumar, S. Ojha, A.K. Mittal, S. Ghosh, F. Singh, Nanostructuring and wettability of ion treated Au thin films. ‎J. Appl. Phys 122, 185303 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    R.P. Yadav, U.B. Singh, A.K. Mittal, S. Dwivedi, Investigating the nanostructured gold thin films using the multifractal analysis. Appl. Phys. A 117, 2159–2166 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R.P. Yadav, M. Kumar, A.K. Mittal, A.C. Pandey, Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces. Chaos 25, 083115 (2015)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    R.P. Yadav, R.K. Pandey, A.K. Mittal, S. Dwivedi, A.C. Pandey, Multifractal analysis of sputtered CaF2 thin films. Surf. Interface Anal. 45, 1775–1780 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Hosseinabadi, F. Abrinaei, M. Shirazi, Statistical and fractal features of nanocrystalline AZO thin films. Phys. A 481, 11–22 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Nasehnejad, M.G. Shahraki, G. Nabiyouni, Atomic force microscopy study, kinetic roughening and multifractal analysis of electrodeposited silver films. Appl. Surf. Sci. 389, 735–741 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    R.P. Yadava, S. Dwivedi, A.K. Mittal, M. Kumar, A.C. Pandey, Fractal and multifractal analysis of LiF thin film surface. Appl. Surf. Sci. 261, 547–553 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    R.P. Yadav, S. Dwivedi, A.K. Mittal, M. Kumar, A.C. Pandey, Analyzing the LiF thin films deposited at different substrate temperatures using multifractal technique. Thin Solid Films 562, 126–131 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    International Centre of Diffraction Data, Powder Diffraction File, JCPDS File No 00-036-1451 (1996)Google Scholar
  42. 42.
    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  43. 43.
    R.K. Pandey, K. Ghosh, S. Mishra, J.P. Bange, P.K. Bajpai, D.K. Gautam, Effect of film thickness on structural and optical properties of sol–gel spin coated aluminum doped zinc oxide (Al:ZnO) thin films. Mater. Res. Express 5(8), 086408 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    G.A. Kumar, M.V.R. Reddy, K.N. Reddy, Structural and optical properties ZnO thin films grown on various substrates by RF magnetron sputtering. IOP Conf. Ser. Mater. Sci. Eng. 73, 012133 (2015)CrossRefGoogle Scholar
  45. 45.
    W. Chebil, A. Fouzri, B. Azeza, N. Sakly, R. Mghaieth, A. Lusson, V. Sallet, Influence of substrate on structural, morphological and optical properties of ZnO films grown by SILAR method. Bull. Mater. Sci. 37(6), 1283–1291 (2014)CrossRefGoogle Scholar
  46. 46.
    V. Craciun, D. Craciun, X. Wang, T.J. Anderson, R.K. Singh, Transparent and conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures. J. Optoelectron. Adv. M. 5(2), 401–408 (2003)Google Scholar
  47. 47.
    I. Ozena, M.A. Gulgun, Residual stress relaxation and microstructure in ZnO thin films. Adv Sci Tech. 45, 1316–1321 (2006)CrossRefGoogle Scholar
  48. 48.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    S.J. Kwon, J.-H. Park, J.-G. Park, Wrinkling of a sol-gel-derived thin film. Phys. Rev. E 71, 011604 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    R. Shivanna, S. Rajaram, K.S. Narayan, Interface engineering for efficient fullerene-free organic solar cells. Appl. Phys. Lett. 106, 123301 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    M. Rapso, Q. Ferreira, P.A. Ribeiro, A Guide for Atomic Force Microscopy Analysis of soft-condensed Matter (Modern Research and Educational Topics in Microscopy). ed A. Merdez-Vilas et al. (Formatex Spain, 2010) p 758Google Scholar
  52. 52.
    R. Mohammadigharehbagh, S. Pat, S. Ozen, H.H. Yudar, S. Korkmaz, Investigation of the optical properties of the indium-doped ZnO thin films deposited by a thermionic vacuum arc. Optik 157, 667–674 (2018)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Zhao, G. Ching, T. Wang, M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principle and Applications (Academic Press, New York, 2001)Google Scholar
  54. 54.
    M. Pelliccione, T.-M. Lu, Evolution of Thin Film Morphology Modeling and Simulations (Springer, New York, 2008)Google Scholar
  55. 55.
    M.B. Khamesee, Y. Kurosaki, M. Matsui, K. Murai, Nanofractal analysis of material surfaces using atomic force microscopy. Mater. Trans. 45(2), 469 (2004)CrossRefGoogle Scholar
  56. 56.
    B.B. Mandelbrot, J.W. Van Ness, Fractional brownian motions, fractional noises and applications. SIAM Rev. 4, 422 (1968)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    A.N.D. Posadas, D. Gimenez, R. Quiroz, R. Protz, Multifractal characterization of soil pore systems. Soil Sci. Soc. Am. J. 67, 1361–1369 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    A. Carbone, Algorithm to estimate the Hurst exponent of high-dimensional fractals. Phys. Rev. E 76, 056703 (2007)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141 (1986)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    A.B. Chhabra, C. Meneveu, R.V. Jensen, K.R. Sreenivasan, Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40, 5284 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    A.B. Chhabra, R.V. Jensen, Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 62, 1327 (1989)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    G. Korvin, Fractal Methods in the Earth Science (Elsevier, Amsterdam, 1992)Google Scholar
  63. 63.
    T. Vicsek, Fractal Growth Phenomena, 2nd edn. (Word Scientific Publishing Co., Singapore, 1992)CrossRefGoogle Scholar
  64. 64.
    H.B. Callen, Thermodynamics and an Introduction to Thermo-Statistics, 2nd edn. (John Wiley & Sons, New York, 1985)zbMATHGoogle Scholar
  65. 65.
    Z.W. Chen, J.K.L. Lai, C.H. Shek, Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition. ‎Phys. Lett. A. 345, 218–223 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    D. Raoufi, H.R. Fallah, A. Kiasatpour, A.S.H. Rozatian, Multifractal analysis of ITO thin films prepared by electron beam deposition method. Appl. Surf. Sci. 254, 2168–2173 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pure and Applied PhysicsGuru Ghasidas VishwavidyalayaBilaspurIndia

Personalised recommendations