Applied Physics A

, 125:104 | Cite as

Enhancement of light extraction efficiency in the GaN-based light-emitting diodes by selective growth of ZnO nanorods

  • Ji-Yeon Park
  • Sung-Nam LeeEmail author


We demonstrate high light extraction efficiency of GaN-based light-emitting diodes (LEDs) using the selective growth of ZnO nanorods (NRs). The chemical wet-etched hexagonal patterns of ZnO transparent conductive film were used to achieve the selective growth of ZnO NRs, which could be grown at the non-etched hexagonal pattern regions due to the wet-etching effect. The optical transmittance of GaN-based LEDs was decreased by forming additional different types of ZnO transparent conductive films, such as the hexagonal ZnO patterns and the ZnO NRs selectively grown on hexagonal ZnO patterns. However, the light output power of GaN-based LEDs increased on decreasing the optical transmittance by employing a hexagonal ZnO transparent conductive film and selectively grown ZnO NRs. Based on these results, we suggest that the combined structure of the surface hexagonal patterns and the selectively grown ZnO NRs decreases the optical transmittance, but is more effective in improving the light extraction efficiency in the GaN-based LEDs.



This research was supported by Basic Research Program (NRF-2017R1D1A1B03031311) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and by Human Resources Program in the Transportation Specialized Lighting Core Technology Development (No. N0001364) granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea.


  1. 1.
    W.I. Park, G.C. Yi, Adv. Mater. 16, 87 (2004)CrossRefGoogle Scholar
  2. 2.
    S.H.H. Shokouh, A. Pezeshki, S.R.A. Raza, H.S. Lee, S.W. Min, P.J. Jeon, J.M. Shin, S. Im, Adv. Mater. 27, 150 (2015)CrossRefGoogle Scholar
  3. 3.
    R.S. Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Sensor. Actuator. B. Chem. 255, 672 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Qiao, J. Liu, G. Fu, K. Ren, Z. Li, S. Wang, C. Pan, Nano Energy 49, 508 (2018)CrossRefGoogle Scholar
  5. 5.
    P. Vishnukumar, S. Vivekanandhan, M. Misra, A.K. Mohanty, Mat. Sci. Semicond. Process. 80, 143 (2018)CrossRefGoogle Scholar
  6. 6.
    M.A. Rahman, J.A. Scott, A. Gentle, M.R. Phillips, C. Ton-That, Nanotechnology, 29, 425707 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Liu, K. Li, F. Kong, J. Zhao, Q. Yue, X. Yu, Photonics Nanostruct. 16, 9 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    N. Guan, X. Dai, A.V. Babichev, F.H. Julien, M. Tchernycheva, Chem. Sci. 8, 7904 (2017)CrossRefGoogle Scholar
  9. 9.
    K.W. Kim, N.J. Choi, K.B. Kim, M. Kim, S.N. Lee, J. Alloy. Compd. 666, 88 (2016)CrossRefGoogle Scholar
  10. 10.
    J.K. Sheu, Y.S. Lu, M.L. Lee, W.C. Lai, C.H. Kuo, C.J. Tun, Appl. Phys. Lett. 90, 263511 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    T.Y. Park, Y.S. Choi, J.W. Kang, J.H. Jeong, S.J. Park, D.M. Jeon, J.W. Kim, Y.C. Kim, Appl. Phys. Lett. 96, 96 051124 (2010)Google Scholar
  12. 12.
    T.X. Lee, K.F. Gao, W.T. Chien, C.C. Sun, Opt. Exp. 15, 6670 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R.H. Homg, C.C. Yang, J.Y. Wu, S.H. Huang, C.E. Lee, D.S. Wuu, Appl. Phys. Lett. 86, 221101 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Pan, R.C. Tu, Y.M. Fan, R.C. Yeh, J.T. Hsu, IEEE Photonics Technol. Lett. 15, 649 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Tak, K. Yong, J. Phys. Chem. B 109, 19263 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Tao, M. Fu, A. Zhao, D. He, Y. Wang, J. Alloy. Compd. 489, 99 (2010)CrossRefGoogle Scholar
  17. 17.
    Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Appl. Surf. Sci. 256, 1698 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    K.K. Kim, S.D. Lee, H. Kim, J.C. Park, S.N. Lee, Y. Park, S.J. Park, S.W. Kim, Appl. Phys. Lett. 94, 071118 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhong, H. Chen, G. Saraf, Y. Lu, C.K. Choi, J.J. Song, D.M. Mackie, H. Shen, Appl. Phys. Lett. 90, 203515 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    H.S. Son, N.J. Choi, K.B. Kim, M. Kim, S.N. Lee, Mat. Res. Bull. 82, 50 (2016)CrossRefGoogle Scholar
  21. 21.
    H.J. Fan, B. Fuhrmann, R. Scholz, F. Scrymgeour, A. Dadgar, A. Krost, M. Zacharias, J. Cryst. Growth 287, 34 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    D.F. Liu, Y.J. Xiang, X.C. Wu, Z.X. Zhang, L.F. Liu, L. Song, X.W. Zhao, S.D. Luo, W.J. Ma, J. Shen, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, Nano Lett. 10, 2375 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Ahsanulhaq, J.H. Kim, Y.B. Hahn, Nanotechnology 18, 485307 (2007)CrossRefGoogle Scholar
  24. 24.
    Y.J. Kim, C.H. Lee, Y.J. Hong, G.C. Yi, S.S. Kim, H. Cheong, Appl. Phys. Lett. 89, 163128 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Y.J. Hong, S.J. An, H.S. Jung, C.H. Lee, G.C. Yi, Adv. Mat. 19, 4416 (2007)CrossRefGoogle Scholar
  26. 26.
    S.H. Lee, T. Minegishi, J.S. Park, S.H. Park, J.S. Ha, H.J. Lee, H.J. Lee, S. Ahn, J. Kim, H. Jeon, T. Yao, Nano Lett. 8, 2419 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    N.J. Choi, H.S. Son, H.J. Choi, K.K. Kim, S.N. Lee, J. Korean Phys. Soc. 65, 417 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nano-Optical EngineeringKorea Polytechnic UniversitySiheungRepublic of Korea

Personalised recommendations