Advertisement

Applied Physics A

, 125:89 | Cite as

Hydrogen influenced the structural and optical properties of Ni-doped BiOCl nanocomposite: creation of FM properties

  • A. A. Dakhel
Article
  • 14 Downloads

Abstract

Bismuth oxychloride (BiOCl) nanocomposite powders doped with nickel ions were synthesized by sol–gel route using bismuth carbonate. The study focused on the determination the essential conditions required to create stable room-temperature ferromagnetic (RT-FM) properties in host BiOCl crystalline medium by means of doping with Ni2+ ions (BiOCl:Ni). This work was based on the following ideas; the presence of Ni2+ dopant impurity ions in BiOCl crystalline lattice could support the dissociation of H2 molecules during the hydrogenation process that can develop the crystalline–electronic medium (CEM) of BiOCl for carrying out the spin–spin (S.S) long-range interaction between dopant Ni2+ ions and thus create FM properties. Structural, optical, and magnetic properties of pure and Ni-doped BiOCl nanocomposite samples were systematically investigated. The structural properties were studied by X-ray diffraction (XRD) method. The optical properties were investigated by diffuse reflection spectroscopy (DRS). The study disclosed the conditions necessary to create RT-FM properties in hydrogenated BiOCl:Ni nanopowders. The physical explanations and discussions were given in the framework of bound magnetic polaron (BMP) theory. Thus, BiOCl nanocrystalline powder could be used as a potential candidate for optical applications with tailored magnetic properties.

References

  1. 1.
    J. Xie, Y. Cao, D. Jia, H. Qin, H. Liang, Room-temperature solid-state synthesis of BiOCl hierarchical microspheres with nanoplates. Catal. Commun. 69, 34–38 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Wang, J. Hui, Y. Huang, Y. Ding, Y. Cai, S. Yin, Z. Li, B. Su, The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes. Mater. Sci. Semicond. Process. 17, 87–93 (2014)CrossRefGoogle Scholar
  3. 3.
    H-Y. Hao, Y-Y. Xu, P. Liu, G.-Y. Zhang, BiOCl nanostructures with different morphologies: tunable synthesis and visible-light-driven photocatalytic properties. Chinese Chem. Lett. 26, 133–136 (2015)CrossRefGoogle Scholar
  4. 4.
    M.N. Novokreshchenova, Yu Yukhin, B.B. Bokhonov, Highly Pure Bismuth(III) Oxochloride Synthesis. Chem. Sustain. Dev. 13, 563–568 (2005)Google Scholar
  5. 5.
    C.-Y. Wang, Y.-J. Zhang, W.-K. Wang, D.-N. Pei, G.-X. Huang, J.-J. Chen, X. Zhang, H.-Q. Yu, Appl. Catal. B 221, 320–328 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Gao, D. Zhang, X. Pu, H. Li, W. Li, X. Shao, D. Lv, B. Zhang, J. Dou, Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities. Sep. Purif. Technol. 162, 114–119 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Zhang, Y. Li, R.H.Z. Xu, J. Qiu, Z. Yang, Z. Song, Color tunable and white light emitting via energy transfer in single- phase BiOCl: Er3+, Sm3+ phosphors for WLEDs. J. Rare Earths 36, 231–237 (2017)CrossRefGoogle Scholar
  8. 8.
    P.C. Yan, L. Xu, J.X. Xia, Y. Huang, J.X. Qiu, Q. Xu, Q. Zhang, H.M. Li, Talanta 156–157, 257–264 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Li Xu, H. Yan, S. Li, J. Ling, J. Xia, Q. Qiu, H. Xu, S. Li, Yuan, Metallic Bi self-doping BiOCl composites: Synthesis and enhanced photoelectrochemical performance. Mater. Lett. 196, 225–229 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Li, H. Li, G. Zhan, L. Zhang, Acc. Chem. Res. 50, 112–121 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Kaminski, S.D. Sarma, Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Wolff, R.N. Bhatt, A.C.J. Durst, Polaron-polaron interactions in diluted magnetic semiconductors. J. Appl. Phys. 79, 5196–5198 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    A. Emily, D. Lewis, C.J. Le, A.D. Murphy, M.F.G. Jewell, M.L. Mattera, T.S. Liriano, E. Rahman, H. Charles, Sykes, dissociative hydrogen adsorption on close-packed cobalt nanoparticle surfaces. J. Phys. Chem. C 116, 25868–25873 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Pozzo, D. Alfe, Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces Int. J. Hydrogen Energy 34, 1922–1930 (2009)CrossRefGoogle Scholar
  15. 15.
    L. Schlapbach, Magnetic properties of LaNi5 and their variation with hydrogen absorption and desorption. J. Phys. F: Metal Phys. 10, 2477–2490 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    H. Xuemei Liu, W. Deng, Q. Yao, J. Jiang, Shen, Preparation and photocatalytic activity of Y-doped Bi2O3. J. Alloys Compds 651, 135–142 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Li, K. Zhao, Y. Yu, L. Zhang, Adv. Funct. Mater. 25, 2189–2201 (2015)CrossRefGoogle Scholar
  18. 18.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    A. Khorsand Zak, W.H. Abd. M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamsone-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S 53, 18–22 (2007)Google Scholar
  21. 21.
    Y. Guo, Z. Zhang, G. Zhu, W. Zhang, W. Yang, Controlled synthesis and enhanced luminescence of BiOCl:Eu3+ ultrathin nano sheets. RSC Adv. 7, 2629–2636 (2017)CrossRefGoogle Scholar
  22. 22.
    S.J. Wu, C. Wang, Y.F. Cui, T.M. Wang, B.B. Huang, X.X. Zhang, X.Y. Qin, Mater. Lett. 64, 115–118 (2010)CrossRefGoogle Scholar
  23. 23.
    V. Julie Stephenson, D. Celorrio, S.R. Tiwari, D.C. Hall, D.J. Green, Fermín, Photoelectrochemical properties of BiOCl microplatelets. J. Electroanalytical Chem. 819, 171–177 (2018)CrossRefGoogle Scholar
  24. 24.
    K. Xu, X. Fu, Z. Peng, Facile synthesis and photocatalytic activity of La-doped BiOCl hierarchical, flower-like nano-/micro-structures. Mater. Res. Bull. 98, 103–110 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain

Personalised recommendations