Applied Physics A

, 125:92 | Cite as

Electrical properties and scaling studies of Na3+x ZrxSc2−x(PO4)3 glass ceramic electrolyte for use in Na-ion batteries

  • Shyam Sundar Gandi
  • Suman Gandi
  • Naresh Kumar Katari
  • Dimple P. Dutta
  • Balaji Rao RavuriEmail author


Na-ion conducting Na3+x[ZrxSc2−x(PO4)3] (x = 0, 0.25, 0.5 and 0.75 mol%) glass samples with NASICON-type phase were synthesized by melt quenching method and glass–ceramics were formed by heat treating the precursor glasses at their crystallization temperatures. The major and minor crystalline phases such as [Na3Sc2(PO4)3 (ICSD-27740) (NASICON), ZrP2O7 (ICSD-15084), ZrO2 (ICSD-66781) and Zr2O(PO4)2 (ICSD-1922)] are precipitated in all the glass–ceramic samples. The best bulk conductivity has been observed for Na3.5Zr0.5Sc1.5(PO4)3 glass–ceramic sample (σb = 1.92 × 10−4 S/cm) which exhibits lowest activation energy of 0.492 eV. The single master curve in the scaling analysis revealed that this glass samples show evidence of temperature-independent conduction transport mechanism.



This work has been funded by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Govt. of INDIA, Grant no.: 34/14/06/2018-BRNS/34082. The authors thank Dr. K.S Rama Rao, Sr. Principal Scientist, CSIR-Indian Institute of Chemical Technology, Hyderabad, India for kindly extending the facility to acquire SEM micrographs.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)CrossRefGoogle Scholar
  3. 3.
    G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018)CrossRefGoogle Scholar
  4. 4.
    M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)CrossRefGoogle Scholar
  5. 5.
    Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 1, 18–42 (2016)CrossRefGoogle Scholar
  6. 6.
    C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)CrossRefGoogle Scholar
  7. 7.
    S.S. Gundale, A. Deshpande, Improvement of ionic conductivity in Li3.6Si0.6V0.4O4 ceramic inorganic electrolyte by addition of LiBO2 glass for Li ion battery application. Electrochim. Acta 265, 65–70 (2018)CrossRefGoogle Scholar
  8. 8.
    F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    S. Gandi, S.R. Chinta, P.K. Ojha, M.S. Surendra Babu, B.R. Ravuri, High Na-ion conducting Na1+x[SnxGe2–x(PO4)3] glass–ceramic electrolytes: structural and electrochemical impedance studies. J. Am. Ceram. Soc. 101, 167–177 (2018)CrossRefGoogle Scholar
  10. 10.
    K. He, C. Zu, Y. Wang, B. Han, X. Yin, H. Zhao, Y. Liu, J. Chen, Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline aqueous solution. Solid State Ion. 254, 78–81 (2014)CrossRefGoogle Scholar
  11. 11.
    K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2–x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 35, 1477–1484 (2015)CrossRefGoogle Scholar
  12. 12.
    H. Bradtmüller, A.M. Nieto-Muñoz, J.F. Ortiz-Mosquera, A.C. Rodrigues, H. Eckert, Glass-to-crystal transition in the NASICON glass–ceramic system Na1+xAlxM2–x(PO4)3 (M = Ge, Ti). J. Non-Cryst. Solids 489, 91–101 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    M.I. Kimpa, M.Z. Mayzan, F. Esa, J.A. Yabagi, M.M. Nmaya, M.A. Agam, Synthesis of Nasicon structured solid electrolyte Li1 + xTi2–xAlx(PO4)3 for lithium-ion batteries. Adv. Sci. Lett. 24, 4348–4352 (2018)CrossRefGoogle Scholar
  14. 14.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)CrossRefGoogle Scholar
  15. 15.
    B. Murty, M.M. Rao, S. Ranganathan, Milling maps and amorphization during mechanical alloying. Acta Metall. Mater. 43, 2443–2450 (1995)CrossRefGoogle Scholar
  16. 16.
    M. Nobre, S. Lanfredi, Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy. J. Phys. Chem. Solids 62, 1999–2006 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    A. Verhoef, H.Den Hartog, High-frequency dielectric properties of alkali and alkali-halide borate glasses. Solid State Ion. 68, 305–315 (1994)CrossRefGoogle Scholar
  18. 18.
    S. Elliott, Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ion. 70, 27–40 (1994)CrossRefGoogle Scholar
  19. 19.
    P. Lu, F. Ding, Z. Xu, J. Liu, X. Liu, Q. Xu, Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass–ceramic electrolyte for all-solid-state lithium-ion batteries. J. Power Sources 356, 163–171 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    P. Muralidharan, N. Nallamuthu, I. Prakash, N. Satyanarayana, M. Venkateswarlu, AC conductivity and electrical modulus studies on lithium vanadophosphate glasses. J. Am. Ceram. Soc. 90, 125–131 (2007)CrossRefGoogle Scholar
  21. 21.
    C. Moynihan, Decay function for the electric field relaxation in vitreous ionic conductors. Phys. Chem. Glasses 14, 122–125 (1973)Google Scholar
  22. 22.
    C.T. Moynihan, Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions. J. Non-Cryst. Solids 172, 1395–1407 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    B. Chowdari, R. Gopalakrishnan, S. Goh, K. Tan, Ionic transport studies of the glassy silver vanadomolybdate system. J. Mater. Sci. 23, 1248–1254 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84, 2188 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    T.B. Schrøder, J.C. Dyre, Scaling and universality of ac conduction in disordered solids. Phys. Rev. Lett. 84, 310 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shyam Sundar Gandi
    • 1
  • Suman Gandi
    • 1
  • Naresh Kumar Katari
    • 2
  • Dimple P. Dutta
    • 3
  • Balaji Rao Ravuri
    • 1
    Email author
  1. 1.High Energy Materials Research Laboratory, Department of physics, School of TechnologyGITAM Deemed to be UniversityHyderabadIndia
  2. 2.Department of Chemistry, School of TechnologyGITAM Deemed to be UniversityHyderabadIndia
  3. 3.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations