Advertisement

Applied Physics A

, 125:88 | Cite as

A rapid combustion process for the preparation of NixCu(1−x)Fe2O4 nanoparticles and their adsorption characteristics of methyl blue

  • Shuai Pan
  • Wei Huang
  • Qingmei Yu
  • Xiao Liu
  • Yanghua Liu
  • Ruijiang LiuEmail author
Article
  • 20 Downloads

Abstract

A rapid combustion process for the preparation of magnetic NixCu(1−x)Fe2O4 (x = 0.1–0.9) nanoparticles was introduced. Magnetic NixCu(1−x)Fe2O4 nanoparticles were characterized by XRD, SEM, TEM, SAED, and VSM. The results showed that x value, the volume of absolute alcohol and the calcination temperature were the three key factors to the size and properties of NixCu(1−x)Fe2O4 nanoparticles. Ni0.5Cu0.5Fe2O4 nanoparticles calcined at 400 °C for 2 h with absolute alcohol of 25 mL were employed to research their adsorption characteristics of methyl blue (MB). The results indicated that the adsorption kinetics of MB onto Ni0.5Cu0.5Fe2O4 nanoparticles could match the pseudo-second-order kinetics model very well, while the adsorption isotherm could be described by Langmuir model. It revealed that the adsorption of MB onto Ni0.5Cu0.5Fe2O4 nanoparticles was monolayer adsorption mechanism. Besides, the effect of pH on adsorption was investigated, and the maximum adsorption capacity was up to 78.3 mg/g when the pH value of solution was 5.

Graphical abstract

Magnetic NixCu(1−x)Fe2O4 nanoparticles were prepared via a rapid combustion process, and were characterized by XRD, SEM, TEM, SAED, and VSM. The three key factors of x value, the volume of absolute alcohol, and the calcination temperature for the preparation of NixCu(1−x)Fe2O4 nanoparticles were investigated. Ni0.5Cu0.5Fe2O4 nanoparticles were employed to research their adsorption characteristics of methyl blue (MB), and the adsorption kinetics, the adsorption isotherm, and the adsorption mechanism were analyzed.

Notes

Acknowledgements

This work was supported by the Jiangsu Provincial Postgraduate Scientific Practice and Innovation Project (Grant no. SJCX18_0753).

References

  1. 1.
    M. Li, Z. Wang, R.Q. Zhang, Solid State Commun. 152, 1564 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    A. Kumar, F. Chen, A. Mozhi, X. Zhang, Y.Y. Zhao, X.D. Xue, Y.L. Hao, X.N. Zhang, P.C. Wang, X.J. Liang, Nanoscale 5, 8307 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Zhang, D. Sando, V. Nagarajan, J. Mater. Chem. C 4, 4092 (2016)CrossRefGoogle Scholar
  4. 4.
    P.M.A. Caetano, A.S. Albuquerque, L.E. Fernandez-Outon, W.A.A. Macedo, J.D. Ardisson, J. Alloy. Compd. 758, 247 (2018)CrossRefGoogle Scholar
  5. 5.
    J.M. Apostolova, Wesselinowa, Solid State Commun. 149, 986 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Results Phys. 7, 345 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    F. Widhiastuti, J.Y. Lin, Y.J. Shih, Y.H. Huang, Chem. Eng. J. 350, 893 (2018)CrossRefGoogle Scholar
  8. 8.
    G. Singh, I.P.S. Kapoor, S. Dubey, P.F. Siril, J.H. Yi, F.Q. Zhao, R.Z. Hu, Thermochim. Acta 477, 42 (2008)CrossRefGoogle Scholar
  9. 9.
    N.M.R. Martins, A.J.L. Pombeiro, L.M.D.R.S. Martins, Catal. Commun. 116, 10 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Azadmanjiri, H.K. Salehani, M.R. Barati, F. Farzan, Mater. Lett. 64, 1242 (2010)CrossRefGoogle Scholar
  11. 11.
    Y.N. Li, X.H. Wu, W.W. Wu, K.T. Wang, S. Liao, J. Supercond. Nov. Magn. 26, 2153 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Bingölbali, N. Doğan, Z. Yeşil, M. Asiltürk, J. Magn. Magn. Mater. 373, 222 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    E. Leal, J. Dantas, P.T.A.D. Santos, S.M.D.C.M. Bicalho, R.H.G.A. Kiminami, M.R.D. Silva, A.C.F.D.M. Costa, Appl. Surf. Sci. 455, 635 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    K. Faungnawakij, R. Kikuchi, T. Fukunaga, K. Eguchi, J. Phys. Chem. C 113, 18455 (2009)CrossRefGoogle Scholar
  15. 15.
    H.Y. Wang, D.M. Zhu, W.C. Zhou, F. Luo, J. Mater. Sci. Mater. Electron. 26, 7698 (2015)CrossRefGoogle Scholar
  16. 16.
    K.Y. Kumar, H.B. Muralidhara, Y.A. Nayaka, J. Balasubramanyam, H. Hanumanthappa, Powder Technol. 246, 125 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Chiavola, E. D’Amato, M. Stoller, A. Chianese, M.R. Boni, Chem. Eng. Trans. 47, 325 (2016)Google Scholar
  18. 18.
    X.H. Wang, C.L. Jiang, B.X. Hou, Y.Y. Wang, C. Hao, J.B. Wu, Chemosphere. 206, 587 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    H.W. Wang, S.N. Jia, H.J. Wang, B. Li, W. Liu, N.B. Li, J. Qiao, C.Z. Li, Sci. Bull. 62, 319 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Lasri, A.S. Elsherbiny, N.E. Eltayeb, M. Haukka, M.E. El-Hefnawy, J. Organomet. Chem. 866, 21 (2018)CrossRefGoogle Scholar
  21. 21.
    F. Zhang, X.J. Yin, W.H. Zhang, Y.F. Ji, J. Taiwan Inst. Chem. E. 65, 269 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Bahrami, S.J. Hoseini, Appl. Organomet. Chem. 32, 3920 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Vuppala, M. Stoller, A. Chiavola, A. Kanaev, K. Cheng, Chem. Eng. Trans. 70, 1819 (2018)Google Scholar
  24. 24.
    Y. Hussain, J.W. Li, J.S. Qi, L.J. Li, Wang, J. Environ. Manag. 215, 123 (2018)CrossRefGoogle Scholar
  25. 25.
    B. Ohs, M. Krödel, M. Wessling, Sep. Purif. Technol. 204, 13 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.S. Ho, J. Hazard. Mater. 37, 681 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Doğan, Y. Özdemir, M. Alkan, Dyes Pigment 75, 701 (2007)CrossRefGoogle Scholar
  28. 28.
    N.A. Negma, M.G.A.E. Wahed, A.R.A. Hassan, M.T.H.A. Kana, J. Mol. Liq. 264, 292 (2018)CrossRefGoogle Scholar
  29. 29.
    Z.H. Chen, B.C. Zeng, Int. J. Sediment Res. 32, 82 (2017)CrossRefGoogle Scholar
  30. 30.
    W.E. Oliveira, A.S. Franca, L.S. Oliveira, S.D. Rocha, J. Hazard. Mater. 152, 1073 (2008)CrossRefGoogle Scholar
  31. 31.
    R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Ecol. Eng. 91, 317 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Deng, C. Jung, R. Zhao, K. Torrens, L. Wu, Chem. Eng. J. 350, 739 (2018)CrossRefGoogle Scholar
  33. 33.
    Y.Z. Hong, A. Ren, Y.H. Jiang, J.H. He, L.S. Xiao, W.D. Shi, Ceram. Int. 41, 1477 (2015)CrossRefGoogle Scholar
  34. 34.
    X.Y. Tana, Y. Zhao, G.Y. Li, C.W. Hu, Appl. Surf. Sci. 257, 6256 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    M. Doğan, M. Alkan, Chemosphere 50, 517 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    P.M. Stähelin, A. Valério, S.M.D.A.G.U.D. Souza, A.D. Silva, J.A.B. Valle, A.A.U.D. Souza, Fuel 231, 45 (2018)CrossRefGoogle Scholar
  37. 37.
    P.Y. Wang, J.H. Zu, Y.Z. Wei, Nucl. Sci. Technol. 28, 30 (2017)CrossRefGoogle Scholar
  38. 38.
    I.J. Idan, L.C. Abdullah, T.S.Y. Choong, S.N.A.B.M. Jamil, Adsorpt. Sci. Technol. 36, 694 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuai Pan
    • 1
  • Wei Huang
    • 1
  • Qingmei Yu
    • 1
  • Xiao Liu
    • 1
  • Yanghua Liu
    • 1
  • Ruijiang Liu
    • 1
    Email author
  1. 1.School of PharmacyJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations