Applied Physics A

, 125:91 | Cite as

Constructing honeycomb architectures from polymer carbon dot composites for luminous efficacy enhancement of LEDs

  • Haixia Shen
  • Jiazhuang Guo
  • Luting Ling
  • Fucheng Li
  • Qing Li
  • Cai-Feng Wang
  • Jing WangEmail author
  • Su ChenEmail author


In this work, we report a facile construction of honeycomb-patterned membranes from polymer carbon dot (PCD) composites, which are demonstrated to effectively enhance the luminous efficacy of GaN-based light-emitting diodes (LEDs). A series of PCD composites were successfully achieved by a pyrolysis process from poly(methyl methacrylate-co-dimethyl diallyl ammonium chloride) copolymers, in which CDs were in situ formed and bonded with the polymer chains. Subsequently, ordered porous PCD membranes with a bifunctionality of fluorescence and hydrophobicity were generated via a “breath figure” method under humid conditions. Significantly, these honeycomb-like architectures could contribute to 41.9% improvement of the luminous efficacy for LEDs, showing great potentials for electrical, optoelectronic, and photovoltaic applications.



This work was supported by the National Natural Science Foundation of China (21706122 and 21736006), National Key Research and Development Program of China (2016YFB0401700), Fund of State Key Laboratory of Material-Oriented Chemical Engineering (ZK201704 and ZK201716), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    S.Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 44, 362 (2015)CrossRefGoogle Scholar
  2. 2.
    B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, S. Prantl, R. Godin, J.R. Durrant, E. Reisner, Angew. Chem. Int. Ed. 56, 6459 (2017)CrossRefGoogle Scholar
  3. 3.
    Z.G. Gu, D.J. Li, C. Zheng, Y. Kang, C. Woll, J. Zhang, Angew. Chem. Int. Ed. 56, 6853 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Cao, X. Wang, M.J. Meziani, F.S. Lu, H.F. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.Y. Xie, Y.P. Sun, J. Am. Chem. Soc. 129, 11319 (2007)Google Scholar
  5. 5.
    S.T. Yang, L. Cao, P.G. Luo, F.S. Lu, X. Wang, H.F. Wang, M.J. Meziani, Y.F. Liu, G. Qi, Y.P. Sun, J. Am. Chem. Soc. 131, 11308 (2009)CrossRefGoogle Scholar
  6. 6.
    H.T. Li, X.D. He, Z.H. Kang, H. Huang, Y. Liu, J.L. Liu, S.Y. Lian, C.H.A. Tsang, X.B. Yang, S.T. Lee, Angew. Chem. Int. Ed. 49, 4430 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Wang, Y.F. Lim, G. Wei, Ho, Nanoscale 6, 9673 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    X.M. Li, M.C. Rui, J.Z. Song, Z.H. Shen, H.B. Zeng, Adv. Funct. Mater. 25, 4929 (2015)CrossRefGoogle Scholar
  9. 9.
    Z.C. Yang, M. Wang, A.M. Yong, S.Y. Wong, X.H. Zhang, H. Tan, A.Y. Chang, X. Li, J. Wang, Chem. Commun. 47, 11615 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Wang, C.F. Wang, S. Chen, Angew. Chem. Int. Ed. 51, 9297 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Wang, M.M. Gao, G.W. Ho, J. Mater. Chem. A. 2, 5703 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Wang, Y.H. Ng, Y.F. Lim, G.W. Ho, RSC Adv. 4, 44117 (2014)CrossRefGoogle Scholar
  13. 13.
    S.J. Zhu, Y.B. Song, J.R. Shao, X.H. Zhao, B. Yang, Angew. Chem. Int. Ed. 54, 14626 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Guo, C.F. Wang, Z.Y. YU, L. Chen, S. Chen, Chem. Commun. 48, 2692 (2012)CrossRefGoogle Scholar
  15. 15.
    F. Wang, Z. Xie, H. Zhang, C.Y. Liu, Y.G. Zhang, Adv. Funct. Mater. 21, 1027 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Widawski, M. Rawiso, B. Francois, Nature 369, 387 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    N. Noor, J. Koll, C. Abetz, H. Notzke, V. Abetz, Sci. Rep. 7, 8050 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    K. Han, L.P. Heng, L. Jiang, ACS Nano 10, 11087 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Lednicky, E. Coufalova, J. Hromadkova, A. Delong, V. Kolarik, Polymer 41, 4909 (2000)CrossRefGoogle Scholar
  20. 20.
    S.N. Baker, G.A. Baker, Angew. Chem. Int. Ed. 49, 6726 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Xu, M. Wu, Y. Liu, X.Z. Feng, X.B. Yin, X.W. He, Y.K. Zhang, Chem. Eur. J. 19, 2276 (2013)CrossRefGoogle Scholar
  22. 22.
    Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H.F. Wang, P.G. Luo, H. Yang, M.E. Kose, B.L. Chen, L.M. Veca, S.Y. Xie, J. Am. Chem. Soc. 128, 7756 (2006)CrossRefGoogle Scholar
  23. 23.
    S.J. Zhu, Y.B. Song, X.H. Zhao, J.R. Shao, J.H. Zhang, B. Yang, Nano Res. 8, 355 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Sun, J. Ji, J.C. Shen, Langmuir 24, 11338 (2008)CrossRefGoogle Scholar
  25. 25.
    J. Wang, C.F. Wang, H.X. Shen, S. Chen, Chem. Commun. 46, 7376 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 855 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    J. Wang, H.X. Shen, C.F. Wang, S. Chen, J. Mater. Chem. 22, 4089 (2012)CrossRefGoogle Scholar
  28. 28.
    W.J. Hyun, H.K. Lee, S.S. Oh, O. Hess, C.G. Choi, S.H. Im, O.O. Park, Adv. Mater. 23, 1846 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Bolognesi, C. Botta, S. Yunus, Thin Solid Films 492, 307 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haixia Shen
    • 1
  • Jiazhuang Guo
    • 1
  • Luting Ling
    • 1
  • Fucheng Li
    • 1
  • Qing Li
    • 1
  • Cai-Feng Wang
    • 1
  • Jing Wang
    • 1
    • 2
    Email author
  • Su Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina
  2. 2.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouChina

Personalised recommendations