Advertisement

Applied Physics A

, 125:81 | Cite as

A novel methodology to suppress ambipolarity and improve the electronic characteristics of polarity-based electrically doped tunnel FET

  • Bandi Venkata ChandanEmail author
  • Kaushal Nigam
  • Dheeraj Sharma
  • Vinay Anand Tikkiwal
Article
  • 40 Downloads

Abstract

In this letter, we have explored the effect of metal strip (MS) approach on electrically doped tunnel field effect transistor (ED-TFET) in the presence of hetero-material (HM) and named the proposed device as hetero-material metal strip electrically doped tunnel FET (HM–MS–ED-TFET). Intention of our work is to suppress the ambipolar current and improve the device electronic characteristics; for this, we have considered MS at drain channel (D/C) region where energy band becomes wider which helps in suppression the ambipolarity and HM is considered at source region which will reduce the tunneling barrier width and increase the tunneling area at source channel (S/C) which helps to improve the ON current and other device performance. To support our work and make things easily understandable, we have added an optimization part for HM and MS. Overall, the proposed device can be useful for higher frequency and low-circuit applications. All simulated results are carried out using 2-D ATLAS software.

References

  1. 1.
    S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2007)CrossRefADSGoogle Scholar
  2. 2.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRefADSGoogle Scholar
  3. 3.
    W.Y. Choi, B.-G. Park, J.D. Lee, T.-J.K. Liu, Tunneling field-effect transistor (TFETs) with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRefADSGoogle Scholar
  4. 4.
    N. Damrongplasit, C. Shin, S.H. Kim, R.A. Vega, T.J.K. Liu, Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRefADSGoogle Scholar
  5. 5.
    C.L. Royer, F. Mayer, Exhaustive experimental study of tunnel field effect transistors (TFETs): from materials to architecture. in Proc. 10th Inter. Conf. Ultimate Integr. Silicon, pp. 53–56 (2009)Google Scholar
  6. 6.
    U.E. Avci, D.H. Morris, I.A. Young, Tunnel field effect transistors: prospects and challenges. IEEE J. Electron Devices Soc. 3(3), 88–95 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Ghosh, K. Koley, C.K. Sarkar, Impact of the lateral straggle on the analog and RF performance of TFET. Microelectron Reliab. 55(2), 326–331 (2015)CrossRefGoogle Scholar
  8. 8.
    M.Jagadesh Kumar, Sindhu Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 16(10), 3285–3290 (2013)CrossRefADSGoogle Scholar
  9. 9.
    A. Lahgere, C. Sahu, J. Singh, Electrically doped dynamically configurable field-effect transistor for low-power and high-performance applications. Electron. Lett. 51(16), 1284–1286 (2015)CrossRefGoogle Scholar
  10. 10.
    Bandi Venkata Chandan, S. Sushmitha Dasari, D.Sharma Yadav, Approach to suppress ambipolarity and improve RF and linearity performances on ED-tunnel FET. IET Micro Nano Lett. 13, 684–689 (2018)CrossRefGoogle Scholar
  11. 11.
    K. Nigam, P. Kondekar, D. Sharma, DC characteristics and analog/RF performance of novel polarity control GaAs-Ge based tunnel field effect transistor. Superlattices Microstruct. 92, 224–231 (2016)CrossRefADSGoogle Scholar
  12. 12.
    ATLAS Device Simulation Software (Silvaco Int., Santa Clara, 2016)Google Scholar
  13. 13.
    M. Zervas, D. Sacchetto, G. De Micheli, Y. Leblebici, Top down fabrication of very-high density vertically stacked silicon nanowire arrays with low temperature budget. Microelectron. Eng. 88(10), 3127–3132 (2011)Google Scholar
  14. 14.
    M. De Marchi et al., Polarity control in double-gate, gate allround vertically stacked silicon nanowire FETs. in IEDM Tech. Dig. pp. 8.4.1–8.4.4 (2012)Google Scholar
  15. 15.
    R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17(5), 236246 (2015)Google Scholar
  16. 16.
    S. Tirkey, D. Sharma, B.R. Raad, Introduction of a metal strip in oxide region of junctionless tunnel field-effect transistor to improve DC and RF performance. J. Comput. Electron. 16, 714–720 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Trndahl, M. Ottosson, J.-O. Carlsson, Growth of copper metal by atomic layer deposition using copper(I) chloride, water and hydrogen as precursors. Thin Solid Films 458, 129136 (2004)Google Scholar
  18. 18.
    K. Boucart, A.M. Ionescu, Length scaling of the double gate tunnel FET with a high-K gate dielectric. Solid State Electron. 51, 1500–1507 (2007)CrossRefADSGoogle Scholar
  19. 19.
    P. Ranade, H. Takeuchi, T.-J. King, C. Hu, Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid State Lett. 4(11), G86G87 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Tirkey, D. Sharma, D.S. Yadav, S. Yadav, Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans. Electron Devices 64, 3943–3950 (2017)CrossRefADSGoogle Scholar
  21. 21.
    B.V. Chandan, M. Gautami, K. Nigam et al., Impact of a metal-strip on a polarity-based electrically doped TFET for improvement of DC and analog/RF performance. J. Comput. Electron. (2018).  https://doi.org/10.1007/s10825-018-1280-z
  22. 22.
    Shivendra Yadav, Dheeraj Sharma, Bandi Venkata Chandan, Mohd Aslam, Deepak Soni, Neeraj Sharma, A novel hetero-material gate-underlap electrically doped TFET for improving DC/RF and ambipolar behavior. Superlattices Microstruct. 117, 9–17 (2018)CrossRefADSGoogle Scholar
  23. 23.
    S. Yadav, R. Madhukar, D. Sharma et al., Introduction of a metal strip in oxide region of junctionless tunnel field effect transistor to improve DC and RF performance. Appl. Phys. A. 124, 517 (2018).  https://doi.org/10.1007/s00339-018-1930-9 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bandi Venkata Chandan
    • 1
    Email author
  • Kaushal Nigam
    • 2
  • Dheeraj Sharma
    • 1
  • Vinay Anand Tikkiwal
    • 2
  1. 1.PDPM-India Institute of Information Technology Design and ManufacturingJabalpurIndia
  2. 2.Jaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations