Advertisement

Applied Physics A

, 125:69 | Cite as

Machinability improvement of silicon carbide via femtosecond laser surface modification method

  • Binbin Meng
  • Jian Zheng
  • Dandan Yuan
  • Shaolin XuEmail author
Article
  • 72 Downloads

Abstract

In this paper, the laser-induced periodic surface structures (LIPSS) of single-crystal SiC and the machining properties of the modified layer are studied. The distribution of surface features as a function of laser repetition frequency and the phase of micro/nanostructures of the surface modification layer are investigated. Furthermore, wear and machinability of the modified SiC layer are analyzed using nano-scratching. The results indicate that surface modification with the femtosecond laser can effectively reduce the pushing and extrusion of material as well as facilitate removal of materials. The hybrid-grinding method can also reduce the influence of the size effect during processing, which effectively improves machinability of SiC during ultra-precision grinding process.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51705233) and Natural Science Foundation of Guangdong Province (Grant No. 2018A030310125).

References

  1. 1.
    W.E. Nelson, F.A. Halden, A. Rosengreen, J. Appl. Phys. 37, 333 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    C. Li, F. Zhang, B. Meng, Z. Ma, J. Mater. Eng. Perform. 26, 1000 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    C. Li, I.B. Bhat, R. Wang, J. Seiler, J. Electron. Mater. 33, 481 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D.H. Van Dorp, E.S. Kooij, W.M. Arnoldbik, J.J. Kelly, Chem. Mater. 21, 3297 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Deng, K. Monna, T. Tabata, K. Endo, K. Yamamura, CIRP Ann. Manuf. Technol. 63, 529 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Yan, T.H. Tan, CIRP Ann. Manuf. Technol. 64, 221 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Shen, Q. Tu, H. Deng, G. Jiang, X. He, B. Liu, K. Yamamura, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Deng, K. Endo, K. Yamamura, Appl. Phys. Lett. 103, 111603 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    O. Eryu, K. Abe, N. Takemoto, in Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 242, 237 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    H. Lee, H. Kasuga, H. Ohmori, H. Lee, H. Jeong, J. Cryst. Growth 326, 140 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    P. Wang, Z. Liu, K. Xu, D.J. Blackwood, M. Hong, A.G. Aberle, R. Stangl, I.M. Peters, IEEE J. Photovolt. 7, 493 (2017)CrossRefGoogle Scholar
  13. 13.
    K. Sun, H. Yang, W. Xue, M. Cao, K. Adeyemi, Y. Cao, Langmuir 34, 13203 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Xu, Z. Wang, C.F. Tan, N. Kang, L. Chen, L. Ren, E.S. Thian, G.W. Ho, R. Ji, M. Hong, ACS Appl. Mater. Interfaces 9, 26341 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Xu, H. Yan, C.F. Tan, Y. Lu, Y. Li, G.W. Ho, R. Ji, M. Hong, Adv. Opt. Mater. 6, 1701167 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Goel, W. Bin Rashid, X. Luo, A. Agrawal, V.K. Jain, J. Manuf. Sci. Eng. 136, 021015 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Jia, T.Q. Jia, L.E. Ding, P.X. Xiong, L. Deng, Z.R. Sun, Z.G. Wang, J.R. Qiu, Z.Z. Xu, Opt. Lett. 34, 788 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhang, X. Jia, P. Xiong, T. Jia, Chin. Opt. Lett. 8, 1203 (2010)CrossRefGoogle Scholar
  19. 19.
    S.H. Kim, I.B. Sohn, S. Jeong, Appl. Phys. A Mater. Sci. Process. 102, 55 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    X. Luan, F. Jiang, N. Wang, X. Xu, X. Lu, Q. Wen, Ceram. Int. 44, 15208 (2018)CrossRefGoogle Scholar
  21. 21.
    F. Jiang, X. Luan, N. Wang, X. Xu, X. Lu, Q. Wen, Ceram. Int. 44, 9839 (2018)CrossRefGoogle Scholar
  22. 22.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    D. Yuan, M. Zhou, L. Cai, J. Shen, Spectrosc. Spectr. Anal. 29, 1209 (2009)Google Scholar
  24. 24.
    II. Chism, W. William WO, US7759607 (2010)Google Scholar
  25. 25.
    P. Molian, B. Pecholt, S. Gupta, Appl. Surf. Sci. 255, 4515 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    B. Pecholt, M. Vendan, Y. Dong, P. Molian, Int. J. Adv. Manuf. Technol. 39, 239 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Dong, P. Molian, Appl. Phys. Lett. 84, 10 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    T.Q. Jia, F.L. Zhao, M. Huang, H.X. Chen, J.R. Qiu, R.X. Li, Z.Z. Xu, H. Kuroda, Appl. Phys. Lett. 88, 111117 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M. Yamaguchi, S. Ueno, R. Kumai, K. Kinoshita, T. Murai, T. Tomita, S. Matsuo, S. Hashimoto, Appl. Phys. A Mater. Sci. Process. 99, 23 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Burton, L. Sun, F.H. Long, Z.C. Feng, I.T. Ferguson, Phys. Rev. B Condens. Matter Mater. Phys. 59, 7282 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    A.T. Ward, J. Phys. Chem. 72, 4133 (1968)CrossRefGoogle Scholar
  32. 32.
    D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Peng, X. Fu, N. Zhu, X. Guo, C. Wang, Z. Fu, J. Non. Cryst. Solids 355, 2156 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    C. Li, F. Zhang, X. Wang, X. Rao, J. Eur. Ceram. Soc. 38, 705 (2018)CrossRefGoogle Scholar
  35. 35.
    C. Li, F. Zhang, Y. Wu, X. Zhang, Ceram. Int. 44, 21486 (2018)CrossRefGoogle Scholar
  36. 36.
    J.A. Williams, Tribol. Int. 29, 675 (1996)CrossRefGoogle Scholar
  37. 37.
    Z. Wu, W. Liu, L. Zhang, Comput. Mater. Sci. 137, 282 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Pirouz, M. Zhang, J.L. Demenet, H.M. Hobgood, J. Appl. Phys. 93, 3279 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    G. Xiao, S. To, G. Zhang, Comput. Mater. Sci. 98, 178 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhenPeople’s Republic of China
  2. 2.School of Power and Mechanical EngineeringWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations