Applied Physics A

, 125:84 | Cite as

Generation of light-induced surface current in c-oriented InN epitaxial layers

  • B. K. Barick
  • S. Deb
  • S. Dhar


It has been shown theoretically that an electromotive force (EMF) can be developed between two points on the surface of InN epitaxial films when illuminated with above-band gap light. This is possible if certain surface-attached groups/adatoms, which result in the formation of donor-like-surface states that lead to the formation of a two-dimensional electron gas (2DEG) channel just below the film surface, have a gradient of density between the two contacts. The magnitude and the orientation of the EMF are governed solely by the spatial variation of the surface potential between the two points. Experimentally, we have investigated several c-axis-oriented InN epitaxial films grown on c-sapphire substrates by various techniques. The study shows downward bending of the band at the surface suggesting the formation of a 2DEG channel there. In these layers, surface photo-EMF has indeed been found to develop between contact points. At the same time, the measurement of surface potential across these points shows the existence of a gradient.



We acknowledge Sophisticated Analytical Instrument Facility (SAIF) and central facilities of IIT Bombay, Centre of excellence for Nano electronics (CEN) of IIT Bombay for providing various experimental facilities. This work was supported by Department of Science and Technology (DST) under Grant No: SR/S2/CMP–71/2012 and Council of Scientific & Industrial Research (CSIR) under Grant No: 03(1293)/13/EMR-II, Government of India. Authors would also like to acknowledge Apurba Laha, Department of electrical engineering, IIT Bombay, Mumbai, India, and Arnab Bhattacharya, Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai-400005, India, for providing InN samples grown by MBE and MOCVD techniques, respectively. Some of the results are presented in the supporting information.

Supplementary material

339_2018_2374_MOESM1_ESM.docx (1.5 mb)
See the supplementary material for structural, morphological, optical, transport and phototransport properties of our CVD grown InN epitaxial films as well as MBE and MOCVD grown InN epitaxial layers. (DOCX 1536 KB)


  1. 1.
    T.L. Tansley, C.P. Foley, Optical band gap of indium nitride. J. Appl. Phys. 59, 3241 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    V.Yu. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthmu¨ller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, E.E. Haller, Band Gap of InNand In-Rich InxGa1–xN alloys (0.36 < x < 1), Phys. Status Solidi (b) 230, R4–R6 (2002)CrossRefGoogle Scholar
  4. 4.
    Z.H. Zhang, W. Liu, Z. Ju, S.T. Tan, Y. Ji, Z. Kyaw, X. Zhang, L. Wang, X.W. Sun, H.V. Demir, InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination. Appl. Phys. Lett. 105, 033506 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    C. Rivera, J. Pereiro, Á Navarro, E. Muñoz, O. Brandt, H.T. Grahn, Advances in Group-III-nitride photodetectors. TOEEJ 4, 1 (2010)CrossRefGoogle Scholar
  6. 6.
    D.V.P. McLaughlin, J.M. Pearce, Progress in indium gallium nitride materials for solar photovoltaic energy conversion. Metall. Mat. Trans. A 44, 1947 (2013)CrossRefGoogle Scholar
  7. 7.
    S.N. Mohammad, H. Morkoc, Progress and prospects of group-III nitride semiconductors. Prog. Quantum Electron. 20, 361 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    V.M. Polyakov, F. Schwierz, Low-field electron mobility in wurtzite InN. Appl. Phys. Lett. 88, 032101 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C.G. Van de Walle, J.L. Lyons, A. Janotti, Controlling the conductivity of InN. Phys Status Solidi (a) 207, 1024 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P.C. Wei, S. Chattopadhyay, M.D. Yang, S.C. Tong, J.L. Shen, C.Y. Lu, H.C. Shih, L.C. Chen, K.H. Chen, Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation. Phys. Rev. B 81, 045306 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T. Inushima, Superconductivity of InN caused by In-In nano-structure. Phys. Status Solidi (c) 4, 660 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    G.J. Papaioannou, M. Nowak, P.C. Euthymiou, Influence of illumination intensity on negative photoconductivity of Si ion-implanted GaAs:Cr. J. Appl. Phys. 65, 4864 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    R. Sreekumar, R. Jayakrishnan, C. Sudha Kartha, K.P. Vijayakumar, Anomalous photoconductivity in gamma In2Se3. J. Appl. Phys. 100, 033707 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Han, X. Zheng, M. Fu, D. Pan, X. Li, Y. Guo, J. Zhao, Q. Chen, Negative photoconductivity of InAs nanowires. Phys. Chem. Chem. Phys. 18, 818 (2016)CrossRefGoogle Scholar
  15. 15.
    V.T. Igumenov, D.A. Kichigin, O.A. Mironov, S.V. Chistiakov, Nonequilibrium galvanomagnetic effects of quasi-2D electrons in p-InSb/i-GaAs heteroepitaxial structures. JETP Lett. 38, 459–463 (1983)ADSGoogle Scholar
  16. 16.
    M.J. Chou, D.C. Tsui, G. Weimann, Negative photoconductivity of two-dimensional holes in GaAs/AlGaAs heterojunctions. Appl. Phys. Lett. 47, 609 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    L. Guo, X. Wang, L. Feng, X. Zheng, G. Chen, X. Yang, F. Xu, N. Tang, L. Lu, W. Ge, B. Shen, Temperature sensitive photoconductivity observed in InN layers. Appl. Phys. Lett. 102, 072103 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    L. Guo, X.Q. Wang, X.T. Zheng, X.L. Yang, F.J. Xu, N. Tang, L.W. Lu, W.K. Ge, B. Shen, L.H. Dmowski, T. Suski, Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement. Sci. Rep. 4, 4371 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, W.J. Schaff, Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett. 92, 036804 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    R.P. Bhatta, B.D. Thoms, A. Weerasekera, A.G.U. Perera, M. Alevli, N. Dietz, Carrier concentration and surface electron accumulation in indium nitride layers grown by high pressure chemical vapor deposition. J. Vac. Sci. Technol. A 25, 967 (2007)CrossRefGoogle Scholar
  21. 21.
    A.N.Andriotis and C.A. Nicolaides, Variations of the surface dipole moment due to anisotropy and chemisorptions. Surf Sci. 116, 513 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    L. Kronik, Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 5 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    H. Dember, Photoelectromotive force in cuprous oxide crystals. Physik. Z. 32, 554 (1931) Dember, A crystal photocell. Physik. Z. 32, 856 (1931)Google Scholar
  24. 24.
    C.G.B. Garrett, W.H. Brattain, Physical theory of semiconductor surfaces. Phys. Rev. 99, 376 (1955)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Many, Goldstein, N.B. Grover, Semiconductor Surfaces, 2nd edn. (North-Holland, Amsterdam, 1971)Google Scholar
  26. 26.
    K. Barick, N. Prasad, R.K. Saroj, S. Dhar, Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique. J. Vac. Sci. Technol. A 34, 051503 (2016)CrossRefGoogle Scholar
  27. 27.
    K.A. Rickert, A.B. Ellis, F.J. Himpsel, H. Lu, W. Schaff, J.M. Redwing, F. Dwikusuma, T.F. Kuech, X-ray photoemission spectroscopic investigation of surface treatments, metal deposition, and electron accumulation on InN. Appl. Phys. Lett. 82, 3254 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    B.K. Barick, C. Rodríguez-Fernández, A. Cantarero, S. Dhar, Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method. AIP Adv. 5, 057162 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    K.S.A. Butchera, A.J. Fernandes, P.P.T. Chen, M. Wintrebert-Fouquet, H. Timmers, S.K. Shrestha, H. Hirshy, R.M. Perks, B.F. Usher, The nature of nitrogen related point defects in common forms of InN. J. Appl. Phys. 101, 123702 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    H. Wang, D.S. Jiang, L.L. Wang, X. Sun, W.B. Liu, D.G. Zhao, J.J. Zhu, Z.S. Liu, Y.T. Wang, S.M. Zhang, H. Yang, Investigation on the structural origin of n-type conductivity in InN films. J. Phys. D Appl. Phys. 41, 135403 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    E.A. Davis, S.F.J. Cox, R.L. Lichti, C.G. Van de Walle, Shallow donor state of hydrogen in indium nitride. Appl. Phys. Lett. 82, 592 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations