Applied Physics A

, 125:80 | Cite as

Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures

  • Sonal Singhal
  • Saurabh Dixit
  • A. K. ShuklaEmail author


A simple and effective method for mass production of highly homogeneous carbon nanospheres (CNSs) is reported here using xylene and benzene as carbon precursors. Effect of hydrocarbon precursors on the morphology of carbon nanostructures is investigated, keeping deposition temperature, deposition time, and gas flow rate constant. Morphological studies show that homogeneous CNSs are produced on large scale using xylene hydrocarbon as a carbon precursor. Role of ferrocene is also examined as a catalyst for different distinctive morphologies of carbon nanostructures. This study discloses that catalyst plays an important role for formation of carbon nanotubes during growth process. Excitation wavelength-dependent Raman studies reveal enhancement in the oscillator strength and phonon softening for Raman active modes when excitation wavelength is changed from 514 to 785 nm. Surface charges and colloidal stability of aqueous dispersion of CNSs and CNSs after surface modification with surfactants are also studied by zeta-potential measurement. It was found that CNSs modified with surfactants have higher zeta potential than that of as-synthesized CNSs. Roles of anionic and cationic surfactants are also studied here for determining the surface charges, stability, and agglomeration state in CNSs.



The author, Sonal Singhal is grateful to University Grant Commission (UGC), India, for providing financial support. The authors gratefully acknowledge the Nanoscale Research Facility (NRF) and Central Research Facility (CRF) of Indian Institute of Technology, Delhi (IITD) for the support. The authors are very grateful to Prof. V.D. Vankar for constructive and useful discussion.


  1. 1.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)CrossRefGoogle Scholar
  3. 3.
    J.-F. Colomer, C. Stephan, S. Lefrant, G.-V. Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J.-B. Negy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317, 83–89 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    O.-A. Nerushev, M. Sveningsson, L.K.-L. Falk, F. Rohmund, Carbon nanotube films obtained by thermal chemical vapour deposition. J. Materials Chem. 11, 1122–1132 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    A. Nieto-Marquez, R. Romero, A. Romero, J. L.Valverde, Carbon nanospheres: synthesis, physicochemical properties and applications. J. Materials Chem. 21, 1664–1672 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Xiao, M. Yao, K. Zhu, D. Zhang, S. Zhao, S. Lu, B. Liu, W. Cui, B. Liu, Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure. Nanoscale 5, 11306 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Yuan, J. Chen, J. Zeng, S. Tan, Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 10, 1067–1070 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Zhao, Y. Fan, K. Zhu, D. Zhang, W. Zhang, S. Chen, R. Liu, M. Yao, B. Liu, The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries, Nanoscale 7, 1984 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Y.-Z. Jin, Y.-J. Kim, C. Gao, Y.-Q. Zhu, A. Huczko, M. Endo, H.-W. Kroto, High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery. Carbon 44, 724–729 (2006)CrossRefGoogle Scholar
  11. 11.
    K. Tang, R.-J. White, X. Mu, M.-M. Titirici, P.A.-V. Aken, J. Maier, Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem. 5, 400–403 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Dong, X. Yan, K. Cheng, W. Weng, W. Han, Low-temperature reduction-pyrolysis-catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Adv. 5, 55474 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Zheng, S.-W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    W. Ding, L. Xu, X. Chen, Y. Han, S. Liu, P. Sheng, B. Wang, G. Zhao, H. Bi, F. Huang, Large-scale fabrication of graphene-like carbon nanospheres for lithium ion battery application. Electrochim. Acta 218, 237–242 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Miao, D. Zhu, Y. Zhao, M. Liu, H. Duan, W. Xiong, Q. Zhu, L. Li, Y. Lv, L. Gan, Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Materials 253, 1–9 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Liu, X. Ma, L. Gan, Z. Xu, D. Zhu, L. Chen, A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. J. Materials Chem. A. 2, 17107 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Tang, S. Liu, Z. Lu, X. Lin, B. Zheng, R. Liu, D. Wu, R. Fu, A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 53, 6764 (2017)CrossRefGoogle Scholar
  18. 18.
    W.-J. Lu, S.-Z. Huang, L. Miao, M.-X. Liu, D.-Z. Zhu, L.-C. Li, H. Duan, Z.-J. Xu, L.-H. Gan, Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin. Chem. Lett. 28, 1324–1329 (2017)CrossRefGoogle Scholar
  19. 19.
    W. Lu, M. Liu, L. Miao, D. Zhu, X. Wang, H. Duan, Z. Wang, L. Li, Z. Xu, L. Gan, L. Chen, Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochim. Acta 205, 132–141 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Guo, X. Chen, H. Wei, M. Liu, F. Ding, Z. Yang, K. Yang, S. Wang, X. Xu, S. Huang, Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries. J. Materials Chem. A 5, 6245 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Ma, F. Xu, L. Chen, Y. Zhang, Z. Zhang, J. Qian, Y. Qian, Easy nickel substrate-assisted growth of uniform carbon microspheres and their spectroscopic properties. Carbon 44, 2861 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Sevilla, A.-B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15, 4195–4203 (2009)CrossRefGoogle Scholar
  23. 23.
    P.-N. Bhagat, K.-R. Patil, D.-S. Bodas, K.-M. Paknikar, Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight. RSC Adv. 5, 59491–59494 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Ryu, Y.-W. Suh, D.-J. Suh, D.-J. Ahn, Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compound. Carbon 48, 1990–1998 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, Y. Deng, B. Tu, D.A. Zhao, Low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Tosheva, J. Parmentier, V. Valtchev, C.-V. Guterl, J. Patarin, Carbon spheres prepared from zeolite Beta beads. Carbon 43, 2474–2480 (2005)CrossRefGoogle Scholar
  27. 27.
    Z. Zhou, Q. Yan, F. Su, X.-S. Zhao, Replicating novel carbon nanostructures with 3D macroporous silica template. J. Materials Chem. 15, 2569 (2005)CrossRefGoogle Scholar
  28. 28.
    J.-Y. Miao, D.-W. Hwang, K.-V. Narasimhulu, P.-I. Lin, Y.-T. Chen, S.-H. Lin, L.-P. Hwang, Synthesis and properties of carbon nanospheres grown by CVD using kaolin supported transition metal catalysts. Carbon. 42, 813–822 (2004)CrossRefGoogle Scholar
  29. 29.
    Y.-Z. Jin, C. Gao, W.-K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C.-Y. Lee, S. Acquah, H. Kroto, D.R.-M. Walton, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43, 1944–1953 (2005)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, F. Su, C.-D. Wood, J.-Y. Lee, X.-S. Zhao, Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind. Eng. Chem. Res. 47, 2294–2300 (2008)CrossRefGoogle Scholar
  31. 31.
    R. Sathe, Bhaskar, A scalable and facile synthesis of carbon nanospheres as a metal free electrocatalyst for oxidation of l-ascorbic acid: alternate fuel for direct oxidation fuel cells. J. Electroanal. Chem. 779, 609–616 (2017)CrossRefGoogle Scholar
  32. 32.
    R. Sathe, Bhaskar, Rhodium nanoparticle—carbon nanosphere hybrid material as an electrochemical hydrogen sensor. RSC Adv. 3, 5361 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Ruhle, H.-W. Kroto, D.R.-M. Walton, Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem. Phys. Lett. 338, 101–107 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    S. Mishra, J. Dwivedi, A. Kumar, N. Sankararamakrishnan, The synthesis and characterization of tributyl phosphate grafted carbon nanotubes by the floating catalytic chemical vapour deposition method and their sorption behaviour towards uranium. N. J. Chem. 40, 1213–1221 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Liu, Y. Qin, Z.-X. Guo, D. Zhu, Reduction of solubilized multi-walled carbon nanotubes. Carbon 41, 331–335 (2003)CrossRefGoogle Scholar
  36. 36.
    S. Osswald, M. Havel, Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728–736 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, X. Wang, The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44, 2701–2707 (2006)CrossRefGoogle Scholar
  38. 38.
    Y. Yan, T. Kuila, N.-H. Kim, B.-C. Ku, J.-H. Lee, Effects of reduction and polystyrene sulphate functionalization on the capacitive behaviour of thermally exfoliated graphene. J. Materials Chem. A. 1, 5892 (2013)CrossRefGoogle Scholar
  39. 39.
    C. Thomsen, S. Reich, Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    H. Hu, A. Yu, E. Kim, B. Zhao, M.-E. Itkis, E. Bekyarova, R.-C. Haddon, Influence of zeta potential on the dispersability and purification of single-walled carbon nanotubes. J. Phys. Chem. B. 109, 11520–11524 (2005)CrossRefGoogle Scholar
  41. 41.
    B. White, S. Banerjee, S. O’Brien, N.-J. Turro, I.-P. Herman, Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. 111, 13684–13690 (2007)Google Scholar
  42. 42.
    Q. Li, H. Yan, J. Zhang, Z. Liu, Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapour deposition. Carbon. 42, 829–835 (2004)CrossRefGoogle Scholar
  43. 43.
    M. Inagaki, Discussion of the formation of nanometric texture in spherical carbon bodies. Carbon. 35, 711–713 (1997)CrossRefGoogle Scholar
  44. 44.
    V.G. Pol, M. Motiei, A. Gedanken, J. Moreno, M. Yoshimura, Carbon spherules: synthesis, properties and mechanistic elucidation. Carbon 42, 111–116 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laser Assisted Material Processing and Raman Spectroscopy Laboratory, Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations