Structural analysis of carbon nanospheres synthesized by CVD: an investigation of surface charges and its effect on the stability of carbon nanostructures
- 57 Downloads
Abstract
A simple and effective method for mass production of highly homogeneous carbon nanospheres (CNSs) is reported here using xylene and benzene as carbon precursors. Effect of hydrocarbon precursors on the morphology of carbon nanostructures is investigated, keeping deposition temperature, deposition time, and gas flow rate constant. Morphological studies show that homogeneous CNSs are produced on large scale using xylene hydrocarbon as a carbon precursor. Role of ferrocene is also examined as a catalyst for different distinctive morphologies of carbon nanostructures. This study discloses that catalyst plays an important role for formation of carbon nanotubes during growth process. Excitation wavelength-dependent Raman studies reveal enhancement in the oscillator strength and phonon softening for Raman active modes when excitation wavelength is changed from 514 to 785 nm. Surface charges and colloidal stability of aqueous dispersion of CNSs and CNSs after surface modification with surfactants are also studied by zeta-potential measurement. It was found that CNSs modified with surfactants have higher zeta potential than that of as-synthesized CNSs. Roles of anionic and cationic surfactants are also studied here for determining the surface charges, stability, and agglomeration state in CNSs.
Notes
Acknowledgements
The author, Sonal Singhal is grateful to University Grant Commission (UGC), India, for providing financial support. The authors gratefully acknowledge the Nanoscale Research Facility (NRF) and Central Research Facility (CRF) of Indian Institute of Technology, Delhi (IITD) for the support. The authors are very grateful to Prof. V.D. Vankar for constructive and useful discussion.
References
- 1.D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)ADSCrossRefGoogle Scholar
- 2.C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)CrossRefGoogle Scholar
- 3.J.-F. Colomer, C. Stephan, S. Lefrant, G.-V. Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J.-B. Negy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317, 83–89 (2000)ADSCrossRefGoogle Scholar
- 4.O.-A. Nerushev, M. Sveningsson, L.K.-L. Falk, F. Rohmund, Carbon nanotube films obtained by thermal chemical vapour deposition. J. Materials Chem. 11, 1122–1132 (2001)CrossRefGoogle Scholar
- 5.S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)ADSCrossRefGoogle Scholar
- 6.A. Nieto-Marquez, R. Romero, A. Romero, J. L.Valverde, Carbon nanospheres: synthesis, physicochemical properties and applications. J. Materials Chem. 21, 1664–1672 (2011)CrossRefGoogle Scholar
- 7.J. Xiao, M. Yao, K. Zhu, D. Zhang, S. Zhao, S. Lu, B. Liu, W. Cui, B. Liu, Facile synthesis of hydrogenated carbon nanospheres with a graphite-like ordered carbon structure. Nanoscale 5, 11306 (2013)ADSCrossRefGoogle Scholar
- 8.D. Yuan, J. Chen, J. Zeng, S. Tan, Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 10, 1067–1070 (2008)CrossRefGoogle Scholar
- 9.S. Zhao, Y. Fan, K. Zhu, D. Zhang, W. Zhang, S. Chen, R. Liu, M. Yao, B. Liu, The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries, Nanoscale 7, 1984 (2015)ADSCrossRefGoogle Scholar
- 10.Y.-Z. Jin, Y.-J. Kim, C. Gao, Y.-Q. Zhu, A. Huczko, M. Endo, H.-W. Kroto, High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery. Carbon 44, 724–729 (2006)CrossRefGoogle Scholar
- 11.K. Tang, R.-J. White, X. Mu, M.-M. Titirici, P.A.-V. Aken, J. Maier, Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem. 5, 400–403 (2012)CrossRefGoogle Scholar
- 12.L. Dong, X. Yan, K. Cheng, W. Weng, W. Han, Low-temperature reduction-pyrolysis-catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Adv. 5, 55474 (2015)CrossRefGoogle Scholar
- 13.G. Zheng, S.-W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618 (2014)ADSCrossRefGoogle Scholar
- 14.W. Ding, L. Xu, X. Chen, Y. Han, S. Liu, P. Sheng, B. Wang, G. Zhao, H. Bi, F. Huang, Large-scale fabrication of graphene-like carbon nanospheres for lithium ion battery application. Electrochim. Acta 218, 237–242 (2016)CrossRefGoogle Scholar
- 15.L. Miao, D. Zhu, Y. Zhao, M. Liu, H. Duan, W. Xiong, Q. Zhu, L. Li, Y. Lv, L. Gan, Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Materials 253, 1–9 (2017)ADSCrossRefGoogle Scholar
- 16.M. Liu, X. Ma, L. Gan, Z. Xu, D. Zhu, L. Chen, A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. J. Materials Chem. A. 2, 17107 (2014)CrossRefGoogle Scholar
- 17.Z. Tang, S. Liu, Z. Lu, X. Lin, B. Zheng, R. Liu, D. Wu, R. Fu, A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 53, 6764 (2017)CrossRefGoogle Scholar
- 18.W.-J. Lu, S.-Z. Huang, L. Miao, M.-X. Liu, D.-Z. Zhu, L.-C. Li, H. Duan, Z.-J. Xu, L.-H. Gan, Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin. Chem. Lett. 28, 1324–1329 (2017)CrossRefGoogle Scholar
- 19.W. Lu, M. Liu, L. Miao, D. Zhu, X. Wang, H. Duan, Z. Wang, L. Li, Z. Xu, L. Gan, L. Chen, Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochim. Acta 205, 132–141 (2016)CrossRefGoogle Scholar
- 20.D. Guo, X. Chen, H. Wei, M. Liu, F. Ding, Z. Yang, K. Yang, S. Wang, X. Xu, S. Huang, Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries. J. Materials Chem. A 5, 6245 (2017)CrossRefGoogle Scholar
- 21.X. Ma, F. Xu, L. Chen, Y. Zhang, Z. Zhang, J. Qian, Y. Qian, Easy nickel substrate-assisted growth of uniform carbon microspheres and their spectroscopic properties. Carbon 44, 2861 (2006)CrossRefGoogle Scholar
- 22.M. Sevilla, A.-B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15, 4195–4203 (2009)CrossRefGoogle Scholar
- 23.P.-N. Bhagat, K.-R. Patil, D.-S. Bodas, K.-M. Paknikar, Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight. RSC Adv. 5, 59491–59494 (2015)CrossRefGoogle Scholar
- 24.J. Ryu, Y.-W. Suh, D.-J. Suh, D.-J. Ahn, Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compound. Carbon 48, 1990–1998 (2010)CrossRefGoogle Scholar
- 25.Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, Y. Deng, B. Tu, D.A. Zhao, Low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010)CrossRefGoogle Scholar
- 26.L. Tosheva, J. Parmentier, V. Valtchev, C.-V. Guterl, J. Patarin, Carbon spheres prepared from zeolite Beta beads. Carbon 43, 2474–2480 (2005)CrossRefGoogle Scholar
- 27.Z. Zhou, Q. Yan, F. Su, X.-S. Zhao, Replicating novel carbon nanostructures with 3D macroporous silica template. J. Materials Chem. 15, 2569 (2005)CrossRefGoogle Scholar
- 28.J.-Y. Miao, D.-W. Hwang, K.-V. Narasimhulu, P.-I. Lin, Y.-T. Chen, S.-H. Lin, L.-P. Hwang, Synthesis and properties of carbon nanospheres grown by CVD using kaolin supported transition metal catalysts. Carbon. 42, 813–822 (2004)CrossRefGoogle Scholar
- 29.Y.-Z. Jin, C. Gao, W.-K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C.-Y. Lee, S. Acquah, H. Kroto, D.R.-M. Walton, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43, 1944–1953 (2005)CrossRefGoogle Scholar
- 30.Y. Wang, F. Su, C.-D. Wood, J.-Y. Lee, X.-S. Zhao, Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind. Eng. Chem. Res. 47, 2294–2300 (2008)CrossRefGoogle Scholar
- 31.R. Sathe, Bhaskar, A scalable and facile synthesis of carbon nanospheres as a metal free electrocatalyst for oxidation of l-ascorbic acid: alternate fuel for direct oxidation fuel cells. J. Electroanal. Chem. 779, 609–616 (2017)CrossRefGoogle Scholar
- 32.R. Sathe, Bhaskar, Rhodium nanoparticle—carbon nanosphere hybrid material as an electrochemical hydrogen sensor. RSC Adv. 3, 5361 (2013)CrossRefGoogle Scholar
- 33.M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Ruhle, H.-W. Kroto, D.R.-M. Walton, Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem. Phys. Lett. 338, 101–107 (2001)ADSCrossRefGoogle Scholar
- 34.S. Mishra, J. Dwivedi, A. Kumar, N. Sankararamakrishnan, The synthesis and characterization of tributyl phosphate grafted carbon nanotubes by the floating catalytic chemical vapour deposition method and their sorption behaviour towards uranium. N. J. Chem. 40, 1213–1221 (2016)CrossRefGoogle Scholar
- 35.L. Liu, Y. Qin, Z.-X. Guo, D. Zhu, Reduction of solubilized multi-walled carbon nanotubes. Carbon 41, 331–335 (2003)CrossRefGoogle Scholar
- 36.S. Osswald, M. Havel, Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728–736 (2007)ADSCrossRefGoogle Scholar
- 37.J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, X. Wang, The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44, 2701–2707 (2006)CrossRefGoogle Scholar
- 38.Y. Yan, T. Kuila, N.-H. Kim, B.-C. Ku, J.-H. Lee, Effects of reduction and polystyrene sulphate functionalization on the capacitive behaviour of thermally exfoliated graphene. J. Materials Chem. A. 1, 5892 (2013)CrossRefGoogle Scholar
- 39.C. Thomsen, S. Reich, Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)ADSCrossRefGoogle Scholar
- 40.H. Hu, A. Yu, E. Kim, B. Zhao, M.-E. Itkis, E. Bekyarova, R.-C. Haddon, Influence of zeta potential on the dispersability and purification of single-walled carbon nanotubes. J. Phys. Chem. B. 109, 11520–11524 (2005)CrossRefGoogle Scholar
- 41.B. White, S. Banerjee, S. O’Brien, N.-J. Turro, I.-P. Herman, Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem. 111, 13684–13690 (2007)Google Scholar
- 42.Q. Li, H. Yan, J. Zhang, Z. Liu, Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapour deposition. Carbon. 42, 829–835 (2004)CrossRefGoogle Scholar
- 43.M. Inagaki, Discussion of the formation of nanometric texture in spherical carbon bodies. Carbon. 35, 711–713 (1997)CrossRefGoogle Scholar
- 44.V.G. Pol, M. Motiei, A. Gedanken, J. Moreno, M. Yoshimura, Carbon spherules: synthesis, properties and mechanistic elucidation. Carbon 42, 111–116 (2004)CrossRefGoogle Scholar