Advertisement

Applied Physics A

, 125:76 | Cite as

Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves

  • Baoqin Lin
  • Jianxin Guo
  • Lintao Lv
  • Jing Wu
  • Yahong Ma
  • Baoyang Liu
  • Zheng Wang
Article
  • 41 Downloads

Abstract

In this work, an ultra-wideband and high-efficiency reflective polarization converter is proposed based on an orthotropic anisotropic metasurface for both linear and circular polarized waves, which is a symmetric structure with a pair of mutually perpendicular symmetric axes. Both the simulated and measured results show that the polarization converter can realize linear polarization conversion at x- and y-polarized incidences in the frequency range from 8.77 to 24.71 GHz, which is corresponding to a 95.2% relative bandwidth; moreover, it can keep the handedness of the reflected wave the same as that of the incident wave in this band and realize reflection-type circular polarization conversion at circular polarized (CP) incidence. We have explained the root cause of these polarization conversions, and made it clear that it is just the symmetry of the metasurface structure which makes the magnitude of co-polarized reflection coefficient at CP incidence equal to that of the cross-polarized reflection coefficient at x- and y-polarized incidences, thus it is shown that the previously proposed various reflective linear polarization converters based on orthotropic anisotropic metasurfaces can all realize reflection-type circular polarization conversion.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61471387), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program no. 18JK1195), Key Research and Development Plan Project of Shaanxi Provincial Science & Technology Department (Program no. 2018ZDXM-NY-014).

References

  1. 1.
    F. Aldhubaib, N.V. Shuley, IEEE Trans. Aerosp. Electron. Syst. 46, 1921 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Jia, Y. Liu, Y.J. Guo et al., IEEE Trans. Antennas Propag. 64, 179–188 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Liu, K. Li, Y. Jia et al., IEEE Trans. Antennas Propag. 64, 326–331 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    L. Young, L. Robinson, C. Hacking, IEEE Trans. Antennas Propag. 21, 376–378 (1973)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Huang, Y. Zhou, S.T. Wu, Opt. Express 15, 6414 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    H. Chen, J. Wang, H. Ma, J. Appl. Phys. 115, 154504 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    X. Gao, X. Han, W.P. Cao, IEEE Trans. Antennas Propag. 63, 3522–3530 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Sui, H. Ma, J. Wang et al., Appl. Phys. Lett. 109, 063908 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Su, Y. Zhao, S. Jia et al., Sci. Rep. 6, 20387 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    J. Zhao, Y. Cheng, Appl. Phys. B 122, 255 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    B.Q. Lin, X.Y. Da et al., Microw. Opt. Technol. Lett. 58, 2402 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Sun, C. Gu, X. Chen et al., J. Appl. Phys. 121, 1304–1404 (2017)Google Scholar
  13. 13.
    J.C. Zhao, Y.Z. Cheng, Opt. Int. J. Light Electron Opt. 136, 52–57 (2017)CrossRefGoogle Scholar
  14. 14.
    M.I. Khan, Q. Fraz, F.A. Tahir, J. Appl. Phys. 121, 045103 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    C. Fang, Y. Cheng, Opt. Int. J. Light Electron Opt. 137, 148–155 (2017)CrossRefGoogle Scholar
  16. 16.
    P. Xu, S.Y. Wang, G. Wen, J. Appl. Phys. 121, 1804–1949 (2017)Google Scholar
  17. 17.
    K.K. Xu, Z.Y. Xiao, Phys. E 81, 169–176 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Zhou, X. Tao, Z. Shen et al., Sci. Rep. 6, 38925 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    C. Huang, Y. Feng, J. Zhao et al., Phys. Rev. B 85, 195131 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M.S. Jalali, Moghadam, M. Akbari, IEEE Access 6, 15919 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Yan, G.A.E. Vandenbosch, Appl. Phys. Lett. 102, 103503–103504 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    L. Martinez-Lopez et al., IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Cheng, C. Wu, Z.Z. Cheng et al., Prog. Electromagn. Res. 155, 105–113 (2016)CrossRefGoogle Scholar
  24. 24.
    J.D. Baena et al., IEEE Trans. Antennas Propag. 65, 4124–4133 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Akbari, M. Farahani, A. Sebak, T.A. Denidni, IEEE Access 5, 17927–17937 (2017)CrossRefGoogle Scholar
  26. 26.
    B. Lin, J.L. Wu, X.Y. Da et al., Appl. Phys. A 123, 43 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Liu, Y. Luo et al., Appl. Phys. A 123, 571 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    C.N. Akwuruoha, W. Jiao, W. Lei et al., Opt. Express 25, 27616 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    C. Pfeiffer, C. Zhang, V. Ray et al., Phys. Rev. Lett. 113, 023902 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    L. Wu, Z. Yang, Y. Cheng et al., Appl. Phys. Lett. 103, 2494 (2013)Google Scholar
  31. 31.
    X. Huang, J. Chen, H. Yang, J. Appl. Phys. 122, 076401 (2017)Google Scholar
  32. 32.
    Y. Li, Q. Zhang, S. Qu et al., Chin. Phys. B 24, 258–264 (2015)Google Scholar
  33. 33.
    Y. Li, Q. Zhang, S. Qu et al., Acta Phys. Sin. 64, 124102 (2015)Google Scholar
  34. 34.
    Y.F. Li, J. Zhang, S. Qu et al., Acta Phys. Sin. 64, 094101 (2015)Google Scholar
  35. 35.
    J. Yang, S. Qu, H. Ma et al., Appl. Phys. A 123, 537 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xijing UniversityXi’anChina

Personalised recommendations