Advertisement

Applied Physics A

, 125:54 | Cite as

Adjustment of morphological and dielectric properties of ZnTiO3 nanocrystalline using Al2O3 nanoparticles

  • Amany M. El Nahrawy
  • Ali B. Abou Hammad
  • Ahmed M. Bakr
  • Ahmed R. Wassel
Article
  • 29 Downloads

Abstract

The effect of Al2O3 nanoparticles on the crystalline phase, morphology and adjustment of dielectric properties of ZnTiO3 nano-powder has been investigated. The structural and morphological properties were investigated by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM) and Fourier Transform infra-red (FTIR) spectroscopy. The average particle size of the rhombohedral perovskite structure ZnTiO3 and Al2O3/ZnTiO3 is about 61 nm and 53 nm, respectively. Introduction of Al2O3 NPs induces structural and morphological modifications, causes an adjustment in pore structure and textural characteristics of ZnTiO3 nano-powder. In addition, the dielectric results have appeared that the dielectric constant and dielectric loss, [tan(δ)] are decreased with introducing the Al2O3 NPs in the crystalline nano-sized ZnTiO3 powders. The gained results are presented in detail.

Notes

Acknowledgements

The authors are much grateful to the help and support of the Science and Technology Development Fund (STDF), Egypt for financial support of the research activities related to project; Project ID 25776.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    C. Wattanawikkam, T. Kansa-ard, W. Pecharapa, X-ray absorption spectroscopy analysis and photocatalytic behavior of ZnTiO3 nanoparticles doped with Co and Mn synthesized by sonochemical method. Appl. Surf. Sci. (2018).  https://doi.org/10.1016/j.apsusc.2018.03.175 CrossRefGoogle Scholar
  2. 2.
    S. Perween, A. Ranjan, Improved visible-light photocatalytic activity in ZnTiO3 nanopowder prepared by sol-electro-spinning. Sol. Energy. Mater. Sol. Cells. 163, 148–156 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Ghanbarnezhad, A. Nemati, M. Abolfazli, Effect of calcination temperatures on synthesis of zinc titanate nano-crystal powders via combustion technique. Int. J. Engine. Adv. Technol. 2, 3 (2013)Google Scholar
  4. 4.
    K. Hemalata Reddy, K. Parida, P. Kumar Satapathy, CuO/PbTiO3: a new-fangled pn junction designed for the efficient absorption of visible light with augmented interfacial charge transfer, photoelectrochemical and photocatalytic activities. J. Mater. Chem. A. 5, 20359–20373 (2017)CrossRefGoogle Scholar
  5. 5.
    K.H. Reddy, S. Martha, K.M. Parida, Erratic charge transfer dynamics of Au/ZnTiO3 nanocomposites under UV and visible light irradiation and their related photocatalytic activities. Nanoscale. 10, 18540–18554 (2018)CrossRefGoogle Scholar
  6. 6.
    K.H. Reddy, S. Martha, K.M. Parida, Fabrication of novel p–BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg. Chem. 52(11), 6390–6401 (2013)CrossRefGoogle Scholar
  7. 7.
    M.S. -Niasari, F. Soofivand, A.S. -Nasab, M.S. -Arani, A.Y. Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder. Technol. 27, 2066–2075 (2016)CrossRefGoogle Scholar
  8. 8.
    C.-Li Wang, W.-SingHwang,H. Chu, C.-S. Hsi, H.-H. Ko, K.-M. Chang, X. Zhao, M.–C. Wang, W.-L. Li, Phase formation of zinc titanate precursor prepared by a hydrothermal route at pH5. Ceram. Int. 40, 7407–7415 (2014)CrossRefGoogle Scholar
  9. 9.
    R. Freer, F. Azough, Microstructural engineering of microwave dielectric ceramics. J. Eur. Ceram. Soc. 89(7), 1433–1441 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Ohsato, Functional advances of microwave dielectrics for next generation. Ceram. Int. 38(1), 141–146 (2012)CrossRefGoogle Scholar
  11. 11.
    C.-F. Tseng, H.-C. Hsu, P.-H. Chen, Microwave dielectric properties of Li2W2O7 ceramics improved by Al2O3 addition. J. Alloys. Compd. 764, 840–844 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Ren, K. Bi, X. Fua, Z. Peng, Microstructure and microwave dielectric properties of Al2O3 added Li2ZnTi3O8 ceramics, Ceram. Int. 44, 8928–8933 (2018)CrossRefGoogle Scholar
  13. 13.
    M.-L. Hsieh, L.-S. Chen, H.-Chen Hsu, S. Wang, M.-Phon Houng, S.-Li Fu, Effect of oxide additives on the low-temperature sintering of dielectrics (Zn,Mg)TiO3. Mater. Res. Bull. 43, 3122–3129 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Crișan, M. Zaharescu, V.D. Kumari, M. Subrahmanyam, D. Crișan, N. Dřagan, M. Rǎileanu, M. Jitianu, A. Rusu, G. Sadanandam, J. K. Reddy, Sol–gel based alumina powders with catalytic applications. Appl. Surf. Sci. 258, 448–455 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.M.El Nahrawy, A.B. Abou Hammad, A.B. Abdel-Aziz, A.R. Wassel, Spectroscopic and antimicrobial activity of hybrid chitosan/silica membranes doped with Al2O3 nanoparticles, Silicon (2018).  https://doi.org/10.1007/s12633-018-9986-x CrossRefGoogle Scholar
  16. 16.
    J. Lu, Z.Z. Fang, Synthesis and characterization of nanoscaled cerium (IV) oxide via a solid-state mechanochemical method. J. Am. Ceram. Soc. 89, 842–847 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Ke, X. Cheng, Q. Wang, Y. Wang, Z. Pan, Preparation of a photocatalytic TiO2/ZnTiO3 coating on glazed ceramictiles. Ceram. Int. 40, 8891–8895 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Ayed, H. Abdelkefi, H. Khemakhem, A. Matoussi, Solid state synthesis and structural characterization of zinc titanates. J. Alloys. Compd. 677, 185–189 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Su Kim, K. Gug Yim, J.-S. Son, J.-Y. Leem, Effects of Al Concentrations on structural and optical properties of Al-doped ZnO thin films. Bull. Korean. Chem. Soc. 33, 1235–1241 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Akhtar, M. Gul, I.U. Haq, S.S.A. Shah, Z.U. Khan, Effect of calcination temperature on the morphological and dielectric properties of phase-pure MnCrFeO4 nanoparticles, Inorg. Nano-Metal. Chem. 1722–1727, (2017)Google Scholar
  21. 21.
    L. Wang, H. Kang, D. Xue, C. Liu, Low-temperature synthesis of ZnTiO3 nanopowders. J. Cryst. Growth. 311, 611–614 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Ashery, M.M. El-Okr, M.F. Zawrah, A.B. Abou Hammad, Morphological properties of polycrystalline perovskite PbTiO3 nanoparticles with high purity formed by sol gel technique. IJAETCS. 4(2), 1–4 (2017)Google Scholar
  23. 23.
    K. He, R.Y. Hong, W.G. Feng, D. Badami, A facile co-precipitation synthesis of hexagonal (Zn, Mg)TiO3. Powder. Technol. 239, 518–524 (2013)CrossRefGoogle Scholar
  24. 24.
    B.C. Yadav, A. Yadav, S. Singh, K. Singh Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor. Sens. Actuators. B. 177, 605–611 (2013)CrossRefGoogle Scholar
  25. 25.
    B. Ozturk, G.S.P. Soylu, Promoting role of transition metal oxide on ZnTiO3–TiO2 nanocomposites for the photocatalytic activity under solar light irradiation. Ceram. Int. 42, 11184–11192 (2016)CrossRefGoogle Scholar
  26. 26.
    A.M. El Nahrawy, A.A. Haroun, A.B. Abou Hammad, M.A. Diab, S. Kamel, Uniformly embedded cellulose/polypyrrole-TiO2 composite in sol–gel sodium silicate nanoparticles: structural and dielectric properties. Silicon. (2018).  https://doi.org/10.1007/s12633-018-9910-4 CrossRefGoogle Scholar
  27. 27.
    A.M. El Nahrawy, A.A. Haroun, I. Hamadneh, A.H. Al-Dujaili, S. Kamel, Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole. Carbohydr. Polym. 168, 182–190 (2017)CrossRefGoogle Scholar
  28. 28.
    W. Wei, W.X. -Juan, Z. Jun, M.X. -Yu, C.X.-Bing, Relaxation of dielectric loss peak over intermediate temperature range in Bi5TiNbWO15 intergrowth. Chin. Phys. Lett. 26(4), 047701 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amany M. El Nahrawy
    • 1
  • Ali B. Abou Hammad
    • 1
  • Ahmed M. Bakr
    • 2
  • Ahmed R. Wassel
    • 3
  1. 1.Physics Research Division, Solid State Physics DepartmentNational Research CentreGizaEgypt
  2. 2.Physics Research Division, Spectroscopy DepartmentNational Research CentreGizaEgypt
  3. 3.Thin Film and Electron Microscope Department, Physics research divisionNational Research CenterGizaEgypt

Personalised recommendations