Advertisement

Applied Physics A

, 125:42 | Cite as

Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract

  • Elias E. ElemikeEmail author
  • Damian C. Onwudiwe
  • Omolola E. Fayemi
  • Tarryn L. Botha
Article
  • 48 Downloads

Abstract

Silver (Ag) nanoparticles (NPs), gold (Au) NPs, and silver–gold (Ag–Au) bimetallic nanoparticles (BNPs) were synthesized by use of golden rod leaf extracts. Aqueous solutions of the precursor compounds HAuCl4·xH2O and AgNO3 were mixed individually and jointly with aqueous extract of golden rod leaf and heated with stirring at 80 °C for 1 h. There were observed periodic changes in color which indicate the formation of nanoparticles, and were confirmed by use of UV–Vis spectroscopy. Sizes of NPs were determined by X-ray diffraction and transmission electron microscopy while bioreductants were examined using Fourier transform infrared spectroscopy. In BNPs, both Au and Ag were detected in an unequal ratio. This observation shows that the gold ions were more prone to reduction by the plant biomolecules than the silver ions which may be a unique character due to Solidago canadensis leaf extract and different reduction potentials of the metals. Formation of Ag, Au, and Ag–Au BNPs were suggested by appearance of bands at 420, 560, and 530 nm, respectively. Sizes and shapes of Ag–Au BNPs resemble pure Au NPs more than they do Ag NPs. Electrochemical characterization of NPs by use of cyclic voltammetry showed that Ag–Au BNPs were more electroactive compared to other electrodes. This work therefore accentuates the effect of substrate and precursor concentrations towards nanoparticle formation which could enhance material application depending on the reaction techniques.

Notes

Acknowledgements

The authors acknowledge Dr. Jordaan Anine and the technicians in the Department of Chemistry, North West University for the instrumental analysis.

Author contributions

EEE, DCO, TB designed and carried out the synthesis and characterization whereas OEF did the electrochemical analysis of the work.

Compliance with ethical standards

Conflict of interest

The corresponding author on behalf of the other authors declares no conflict of interest in this piece of work.

References

  1. 1.
    L. Rahman, A. Shah, S.B. Khan, A.M. Asiri, H. Hussain, C. Han, R. Qureshi, M.N. Ashiq, M.A. Zia, M. Ishaq, H. Kraatz, Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J. Appl. Electrochem. 45, 463–472 (2015)CrossRefGoogle Scholar
  2. 2.
    M.S. Shore, J. Wang, A.C. Johnston-Peck, A.L. Oldenburg, J.B. Tracy, Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg Alloy nanoparticles. Small 7, 234 (2011)CrossRefGoogle Scholar
  3. 3.
    P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)CrossRefGoogle Scholar
  4. 4.
    M.X. Zhang, R. Cui, J.Y. Zhao, Z.L. Zhang, D.W. Pang, Synthesis of sub-5 nm Au–Ag alloy nanoparticles using bio-reducing agent in aqueous solution. J. Mater. Chem. 21, 17080–17082 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Sathishkumar, K. Sneha, S.W. Won, C.W. Cho, S. Kim, Y.S. Yun, Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B 73, 332–338 (2009)CrossRefGoogle Scholar
  6. 6.
    E.K. Elumalai, T.N.V.K.V. Prasad, J. Hemachandran, S.V. Therasa, T. Thirumalai, E. David, Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J. Pharm. Sci. Res. 2, 549–554 (2010)Google Scholar
  7. 7.
    M. Safaepour, A.R. Shahverdi, H.R. Shahverdi, M.R. Khorramizadeh, A.R. Gohari, Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J. Med. Biotechnol. 1, 111–115 (2009)Google Scholar
  8. 8.
    K. Kalishwaralal, V. Deepak, S.R.K. Pandian, M. Kottaisamy, S.B. Manikanth, B. Kartikeyan, S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B 77, 257–262 (2010)CrossRefGoogle Scholar
  9. 9.
    D.S. Sheny, J. Mathew, D. Philip, Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta Part A 79, 254–262 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Mondal, N. Roy, R.A. Laskar, I. Sk, S. Basu, D. Mandal, N.A. Begum, Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf. B 82, 497–504 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Senapati, A. Ahmad, M.I. Khan, M. Sastry, R. Kumar, Extracellular biosynthesis of bimetallic Au–Ag Alloy nanoparticles. Small 1, 517–520 (2005)CrossRefGoogle Scholar
  12. 12.
    J.F. Sıanchez-Ramıırez, U. Pal, L. Nolasco-Hernaındez, J. Mendoza-Aılvarez, J.A. Pescador-Rojas, Synthesis and optical properties of Au–Ag alloy nanoclusters with controlled composition. J. Nanomater. 1, 620412 (2008) (1–9) Google Scholar
  13. 13.
    C. Gao, Y. Hu, M. Wang, M. Chi, Y. Yin, Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J. Am. Chem. Soc. 136, 7474–7479 (2014)CrossRefGoogle Scholar
  14. 14.
    X.L. Lozano, C. Mottet, H.C. Weissker, Effect of alloying on the optical properties of Ag–Au nanoparticles. J. Phys. Chem. C 117, 3062–3068 (2013)CrossRefGoogle Scholar
  15. 15.
    M.B. Cortie, A.M. McDonagh, Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 111, 3713–3735 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Nagaonkar, M. Rai, Sequentially reduced biogenic silver–gold nanoparticles with enhanced antimicrobial potential over silver and gold monometallic nanoparticles. Adv. Mater. Lett. 6, 334–341 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Toshima, T. Yonezava, Bimetallic nanoparticles—novel materials for chemical and physical applications. New J. Chem. 22, 1179–1201 (1998)CrossRefGoogle Scholar
  18. 18.
    C. Wang, M. Chi, D. Li, D. Strmcnik, D. Van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A.P. Pauliks, D. Tripkovic, J. Pearson, K.L. More, N.M. Markovic, V.J. Stamenkovic, Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. Am. Chem. Soc. 133, 14396–14403 (2011)CrossRefGoogle Scholar
  19. 19.
    E.E. Elemike, D.C. Onwudiwe, Z. Mkhize, Eco-friendly synthesis of AgNPs using Verbascum thapsus extract and its photocatalytic activity. Mater. Lett. 185, 452–455 (2016)CrossRefGoogle Scholar
  20. 20.
    E.E. Elemike, C.O. Oseghale, A. Chuku, A.H. Labulo, M.C. Owoseni, R. Mfon, E.O. Dare, E.T. Adesuji, Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron 57, 1–5 (2014)CrossRefGoogle Scholar
  21. 21.
    E.E. Elemike, D.C. Onwudiwe, O.E. Fayemi, A.C. Ekennia, E.E. Ebenso, L.R. Tiedt, Biosynthesis, electrochemical, antimicrobial and antioxidant studies of silver nanoparticles mediated by Talinum triangulare aqueous leaf extract. J. Clust. Sci. 28, 309–330 (2017)CrossRefGoogle Scholar
  22. 22.
    E.E. Elemike, D.C. Onwudiwe, A.C. Ekennia, L. Katata-Seru, Biosynthesis, characterization, and antimicrobial effect of silver nanoparticles obtained using Lavandula × intermedia. Res. Chem. Intermed. 43, 1383–1394 (2017)CrossRefGoogle Scholar
  23. 23.
    E.N. Saw, V. Grasmik, C. Rurainsky, M. Epple, K. Tschulik, Electrochemistry at single bimetallic nanoparticles—using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss 193, 327–338 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    A.-Q. Wang, C.-M. Chang, C.-Y. Mou, Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys. Chem. B 109, 18860–18867 (2005)CrossRefGoogle Scholar
  25. 25.
    F. Liu, L. Huang, X. Duan, Y. Li, J. Hu, B. Li, J. Lu, A facile method to prepare noble metal nanoparticles modified self-assembly (SAM) electrode. J. Exp. Nanosci 13, 1–10 (2018)CrossRefGoogle Scholar
  26. 26.
    P.G. Apati, Antioxidant constituents in Solidago canadensis L. and its traditional phytopharmaceuticals Ph.D. thesis, Semmelweis University (2003)Google Scholar
  27. 27.
    P. Leitner, C. Fitz-Binder, A. Mahmud-Ali, T. Bechtold, Production of a concentrated natural dye from Canadian Goldenrod (Solidago canadensis) extracts. Dyes Pigments 93, 1416–1421 (2012)CrossRefGoogle Scholar
  28. 28.
    P. Raveendran, J. Fu, S.L. Wallen, Completely “Green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003)CrossRefGoogle Scholar
  29. 29.
    G. Zhang, M. Du, Q. Li, X. Li, J. Huang, X. Jiang, D. Sun, Green synthesis of Au–Ag alloy nanoparticles using Cacumen platycladi extract. RSC Adv. 3, 1878–1884 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Duan, R. Wang, Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog. Natl. Sci. 23, 113–126 (2013)CrossRefGoogle Scholar
  31. 31.
    C. Tamuly, M. Hazarika, S.C. Borah, M. R.Das, M.P. Boruah, In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C. DC: green chemistry approach. Colloids Surf. B 102, 627–634 (2013)CrossRefGoogle Scholar
  32. 32.
    R. Gopalakrishnan, B. Loganathan, K. Raghu, Green synthesis of Au–Ag bimetallic nanocomposites using Silybum marianum seed extract and their application as a catalyst. RSC Adv. 5, 31691–31699 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Deng, Y. Zhao, O. Padilla-Zakour, G. Yan, Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind. Crops Prod. 74, 803–809 (2015)CrossRefGoogle Scholar
  34. 34.
    D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry (McGraw Hill, New York, 1995)Google Scholar
  35. 35.
    J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2000), pp. 10815–10837Google Scholar
  36. 36.
    O. Pawar, N. Deshpande, S. Dagade, S. Waghmode, P.N. Joshi, Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source Limonia acidissima. J. Exp. Nanosci. (2015).  https://doi.org/10.1080/17458080.2015.1025300 CrossRefGoogle Scholar
  37. 37.
    M. Murugavelu, B. Karthikeyan, Synthesis, characterization of Ag–Au core-shell bimetal nanoparticles and its application for electrocatalytic oxidation/sensing of l-methionine. Mater. Sci. Eng. C 70, 656–664 (2017)CrossRefGoogle Scholar
  38. 38.
    L.S. Chongad, A. Sharma, M.A. Banerjee, Jain synthesis of lead sulfide nanoparticles by chemical precipitation method. J. Phys. Conf. Ser. 755, 012032 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Byram, S.S.B. Moram, V.R. Soma, Picosecond laser fabricated Ag, Au and Ag–Au nanoparticles for detecting ammonium perchlorate using a portable Raman spectrometer. AIP Conf. Proc. 1942, 050028 (2018)CrossRefGoogle Scholar
  40. 40.
    D. Mukundan, R. Mohankumar, R. Vasanthakumari, Comparative study of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and their anticancer efficacy. Bull. Mater. Sci. 40, 335–344 (2017)CrossRefGoogle Scholar
  41. 41.
    J.F. Sánchez-Ramírez, U. Pal, L. Nolasco-Hernández, J. Mendoza-Álvarez, J.A. Pescador-Rojas, Synthesis and optical properties of Au–Ag Alloy nanoclusters with controlled composition. J. Nanomater. 2008, 1–9 (2008)CrossRefGoogle Scholar
  42. 42.
    R.S. Crouch, D.A. Skoog, Principles of Instrumental Analysis (Cengage Learning, Boston, 2006). ISBN 0-49501-201-7Google Scholar
  43. 43.
    H. Li, H. Zhao, H. He, L. Shi, X. Cai, M. Lan, Pt-Pd bimetallic nanocoral modified carbon fiber microelectrode as a sensitive hydrogen peroxide sensor for cellular detection. Sens. Actuators B Chem. 260, 174–182 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, Z. Wang, S. Liu, T. Zhang, In situ growth of Ag-reduced graphene oxide-carbon nanotube on indium tin oxide and its application for electrochemical sensing. Mater. Res. Bull. 84, 355–362 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and TechnologyNorth-West UniversityMmabathoSouth Africa
  2. 2.Department of Chemistry, School of Mathematics and Physical Sciences, Faculty of Agriculture, Science and TechnologyNorth-West UniversityMmabathoSouth Africa
  3. 3.Department of Chemistry, College of ScienceFederal University of Petroleum ResourcesEffurunNigeria
  4. 4.Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom CampusNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations